手套箱(glovebox)
Glove box is a system --- deoxygenated water from bold, transition module, a control system, circulatory system, renewable systems, computer (PLC) display system, vacuum system. H2O, O2 concentrations can reach less than 1PPM. Tel:13701251980 E-mail:sales@etelux.com
星期六, 十二月 23, 2006
Labconco Glove Box

Glove Box, Multihazard, Single Station, Stainless Steel Liner, Provides a physical barrier for safe handling of hazardous materials. Built-in blower system is equipped with a variable speed motor to permit exhausting to the atmosphere without the use of an external blower. Inlet and outlet HEPA filters prevent particulates from entering the glove box chamber, and then trap contaminants before air is exhausted to the environment. Large observation window of 0.95cm (3/8") laminated safety glass measures 91.4Wx70.1H (36x275/, Transfer chamber (mounted on the right side) permits easy transfer of materials and equipment, interior dimensions: 28Wx50.8Dx33Hcm. 110 volts. Manufactured 06/04
GERMFREE LAMINAR FLOW GLOVE BOX / ISOLATOR
GERMFREE LAMINAR FLOW GLOVE BOX / ISOLATOR
INCLUDES:
LFGI 433-RX LAMIINAR FLOW GLOVEBOX/ISOLATOR
DBL. DOOR AIRLOCK ?HEPA FILTRATION PURGE SYSTEM
SLIDE OUT STAINLESS STEEL TRAY FOR AIRLOCK
NEGATIVE / POSITIVE INTERCHAGE SWITCH
TWO STANLESS STELL DISCHARGE TUBES W/ SEALS
CASTERS FOR STAND
DUPLEX ELECTRICAL OUTLET
TWO PART ACCORDION GLOVES
PAST TESTING AND CERTIFICATION FROM TECHNICAL SAFTY SERVICES, INC. (TSS)
33 PAGE LFGI 4SS-RX MANUAL
This unit was purchased new from Germfree in January 2003. It has been lightly used for sterile compounding of pre-filled syringes. Has been well maintained and tested and certified every six months. Unit is in like new condition. We are no longer doing sterile compounding and have zero need for this hood. You will be very happy with this hood. Please note this hood is sold as-is and has no warranty written or implied. Bought new in January 2003 for $13,782.97. Asking $6,500.00. Shipping TBD. Please call with any questions.
The Stainless Steel Laminar Flow Glovebox/Isolator is a complete barrier system. It provides sterile Laminar Flow air for aseptic pharmacy preparations while protecting pharmacy personnel from hazardous materials.
The Laminar Flow Glovebox/Isolator uses an amalgamation of clean room and containment technologies designed specifically for critical pharmacy applications. This unit provides laminar flow air for product protection and complete containment for operator protection.
The Laminar Flow Glovebox/Isolator offers the highest level of product protection by providing vertical laminar flow HEPA filtered air to the complete work environment. The unit utilizes a full width and depth supply HEPA filter above the work surface. The entire work area is thus bathed in HEPA filtered unidirectional mass displaced air. This provides a better than ?lass 10?static particulate-free environment. Particulates generated by manipulations are continuously removed, maintaining class 100 or better conditions when operational. All air entering the LFGI is filtered by the inlet HEPA filter.
The Laminar Flow Glovebox/Isolator provides personnel protection by maintaining a complete barrier from hazardous material in the work area. All air exiting the Glovebox/Isolator passes through the two exhaust HEPA filters, which remove hazardous dust, powders, aerosols and other particulates. All air entering the Glovebox/Isolator passes through the inlet HEPA filter which maintains the barrier.
Heavy Duty Quantum Enclosure Glove Box

Heavy Duty Quantum Enclosure Glove Box. Excellent physical condition. Powers up fine. This glove box enclosure can handle deadly/explosive gases. Comes with various acessoreis (see photos). 3 gloves setup in it now but one more available spot for a glove. Enclosed work area. Dims 25"L x 66"W x 28-1/4"H. Comes with 2 seal rings, 100' of Cole Parmer nat. polyethylene tubing ID 11/64", OD 1/4" wall 3/64". (1) brand new package of 5 sterile, single use, SCF barrels. (1) pair of extra large black gloves. (1) Solfiltra-camfil filter ref. 3205.11.00. (5) lab suits. Other various supplies (see photos). Quantum encloser is stainless steel by Walker Stainless Equipment . Also has a stainless steel tank by Northland Stainless, Inc. Info on tank: MAWP FV/50, PSIG at 350?, MDMT -20? at FV/50 PSIG. MFRS. serial #957083. Year built 1995. Unit is on wheels for easy mobility. Unit has exhaust filter gauge and chamber pressure gauge, blower switch, fault acknowledge switch, and light switch. Has a slurry tank % level digital readout. Able to hookup to other units if needed.
Crate fee + shipping. (7-F-1 5853)
Terms & Conditions
Sold AS IS - Powered up but UNTESTED! All items are shipped FOB - point of origin. Payment must arrive in our offices within 7 days. We will make no exceptions to this policy. If payment has not arrived, your item will be relisted, without notice. We gladly accept Bank wire transfers for orders over $1000 or for international orders. We gladly accept PayPal to SALES@SURPLUSLAB.COM. If you are in the United States, we can accept your check or money order. All buyers outside the United States must pay by PayPal or by bank wire transfer. All International bidders, including Canada, will be charged a $35 additional packing fee for all items requiring international palletizing. All countries outside of the United States will be issued a no wood certificate with their paid invoice, if palletizing is required.
半自动封口车
产品介绍:本设备是根据国外同类设备技术的基础上自行设计的电弧管封口设备.是制造金卤灯内管的主要设备之一.该设备有如下特点: 1. 环型火头加热,收缩均匀.热能利用率高. 2. 采用气动控制,操作更加简便. 3.适用范围广泛.可根据需要设计定做封结直径15--直径35不等,多种板型.多种式样的石英灯管. 4. 生产效率高单班产量可达450---700支. 5. 维修简便快速.大大节约了保养修理时间.
TS系列光学真空镀膜系统
本系统采用石英晶体膜厚监控技术(MDC-360C或Inficon XTC),配备两把大功率电子枪(带数控编程扫描系统)、终端霍尔离子源、可摆式均匀度修正挡板及PLC自动控制系统等。可以实现多层膜厚的连续自动镀膜。具有性价比高、镀膜质量稳定和重复性好等特点。
真空镀膜技术
真空镀膜技术是一种新颖的材料合成与加工的新技术,是表面工程技术领域的重要组成部分。真空镀膜技术是利用物理、化学手段将固体表面涂覆一层特殊性能的镀膜,从而使固体表面具有耐磨损、耐高温、耐腐蚀、抗氧化、防辐射、导电、导 磁、绝缘和装饰等许多优于固体材料本身的优越性能,达到提高产品质量、延长产品寿命、节约能源和获得显著技术经济效益的作用。因此真空镀膜技术被誉为最具发展前途的重要技术之一 ,并已在高技术产业化的发展中展现出诱人的市场前景。这种新兴的真空镀膜技术已在国民经济各个领域得到应用,如航空、航天、电子、信息、机械、石油、化工、环保、军事等领域。 我研究所从上世纪80年代开始从事真空镀膜技术的研究开发,完成了大量科研项目,取得了一批科研成果,如:"阴极电弧镀技术制备TiN装饰膜、超硬膜及其应用"获中国有色金属工业总公司科技进步二等奖;"金刚石镀膜制备技术"获中国有色金属工业总公司科技进步二等奖;"金刚石涂层刀具研究"获国家有色工业局科技进步三等奖;"类金刚石镀膜制备技术及其应用"获中国有色金属工业总公司科技二等奖。 本研究所多年来形成了从阴极电弧镀、磁控溅射、等离子体增强化学气相沉积、热丝化学气相沉积、直流等离子体化学气相沉积等技术为代表的真空镀膜技术,可制备TiN、TiC、TiCN、TiAIN、DLC(类金刚石)、金刚石、透明Al2O3、Cu、Ag等多种金属及化合物涂层及其多层复合涂层,可广泛应用于工具、模具、耐磨、耐腐蚀及装饰等领域。
晶振膜厚控制仪应用与展望
一、前言
国产镀膜机要实现多层膜自动化操作日前均使用进口的膜厚控制仪,使用进口的控制仪存在以下几个问题。其一、价格昂贵,其二、由于各厂家生产的设备不一,所以必须设计不同的接口,其三、现有的旧设备往往不能适应。
二、膜厚控制仪设计有良好的抗干扰电路
控制仪工作稳定,速率和膜厚的控制能达到很高的精度,显示屏中文显示,简单而且直观。用它控制国产镀膜机无须国产镀膜机作很大的改动,甚至可以保留国产镀膜机原有的人工镀膜的状态,不失为国产镀膜机的最佳配套选择。
三、膜厚控制仪有一输出控制插头CH,其输出控制信号线定义如下:
(1)CH/1为+10V CH/2为-10V CH/3为地线,根据用户要求组成一组自动束流控制的屏蔽线,并带有Q9插头。 (2) CH/4 CH/5为一组挡板自动控制线。只要将其并联在镀膜设备手控盒上 的挡板按钮两端,即能实现挡板自动开关。 (3)CH/6 CH/7为一组坩埚自动转位控制线。只要将其并联在镀膜设备手控盒上的坩埚转位点动按钮上,即可实现坩埚的自动转位。即当上一层挡板关闭后,坩埚会自动按顺序转动1个位置。 (4)CH/8 CH/9为一组输入的坩埚到位信号线。只要镀膜设备能提供到位信号(编程或开关信均可,最好是2秒自复信号)其作用是:当坩埚到位后,仪器会自动启动继续下一层的镀膜程序。当仪器的输出/输入接口用连接线与国产镀膜设备按要求连接好之后。只要设备和仪器的“手动/自动”开关全部置“自动”位置,镀膜设备和膜厚控制仪就会按照下列程序动作。控制电路方框图见图(一) 镀膜机待命工作→膜厚控制仪开电源→编程(按坩埚顺序号对应编程)→开始一进入第一层镀膜程序→挡板自动打开→控制束流→到达终厚→挡板自动关闭→坩埚自动按顺序转到2号坩埚→坩埚到位给出到位信号→仪器自动启动进入第二层镀膜程序……进入第六层镀膜程序→将膜厚控制仪“手动/自动”开关置“手动”位置→到达终厚→挡板自动关闭一仪器自动停止工作→完成一个6层膜系的工作。
真空技术
真空技术是建立低于大气压力的物理环境,以及在此环境中进行工艺制作、物理测量和科学试验等所需的技术。真空技术主要包括真空获得、真空测量、真空检漏和真空应用四个方面。在真空技术发展中,这四个方面的技术是相互促进的。
真空是指低于大气压力的气体的给定空间,即每立方厘米空间中气体分子数大约少于两千五百亿亿个的给定空间。真空是相对于大气压来说的,并非空间没有物质存 在。用现代抽气方法获得的最低压力,每立方厘米的空间里仍然会有数百个分子存在。气体稀薄程度是对真空的一种客观量度 ,最直接的物理量度是单位体积中的气体分子数。气体分子密度越小,气体压力越低,真空就越高。但由于历史原因,量度真空通常都用压力表示。
远在1643年,意大利物理学家托里拆利发现,真空和自然空间有大气和大气压力存在。他将一根一端封闭的长玻璃管灌满汞,并倒立于汞槽中时,发现管中汞面 下降,直至与管外的汞面相差76厘米时为止。托里拆利认为,玻璃管汞面上的空间是真空,76厘米高的汞柱是因为存在大气压力的缘故。
1650年,德国的盖利克制成活塞真空泵。1654年,他在马德堡进行了著名的马德堡半球试验:用真空泵将两个合在一起的、直径为14英寸(35.5厘 米)的铜半球抽成真空,然后用两组各八匹马以相反方向拉拽铜球,始终未能将两半球分开。这个著名的试验又一次证明,空间有大气存在,且大气有巨大的压力。 为了纪念托里拆利在科学上的重大发现和贡献,以往习用的真空压力单位就是用他的名字命名的。
19世纪中后期,英国工业革命的成功,促进了生产力和科学实验发展,同时也推动了真空技术的发展。1850年和1865年,先后发明了汞柱真空泵和汞滴真 空泵,从而研制成了白炽灯泡(1879)、阴极射线管(1879)、杜瓦瓶(1893)和压缩式真空计(1874)。压缩式真空计的应用首次使低压力的测 量成为可能。
20世纪初,真空电子管出现,促使真空技术向高真空发展。1935~1937年发明了气镇真空泵、油扩散泵和冷阴极电离计。这些成果和1906年制成的皮拉尼真空计至今仍为大多数真空系统所常用。
1940年以后,真空应用扩大到核研究(回旋加速器和同位素分离等)、真空冶金、真空镀膜和冷冻干燥等方面,真空技术开始成为一个独立的学科。第二次世界大战期间,原子物理试验的需要和通信对高质量电真空器件的需要,又进一步促进了真空技术的发展。
在地球上,通常是对特定的封闭空间抽气来获得真空,用来抽气的设备称为真空泵。早先制成的真空泵,抽气速度不大,极限真空低,很难满足生产和科学试验的需 要。后来相继制成一系列抽气机理不同的真空泵,抽速和极限真空都得到不断的提高。如低温泵的抽气速率可达60000升/秒,极限真空可达千亿分之一帕数量 级。
为了保证真空系统能达到和保持工作需要的真空,除需要配备合适的、抽气性能良好的真空泵以外,真空系统或其零部件还必须经过严格的检漏,以便消除破坏真空的漏孔。低(粗)真空、中真空和高真空系统一般用气压检漏 ;对于超高真空系统,在采用一般检漏法粗检以后,还要采用灵敏度较高的检漏仪,如卤素检漏仪和质谱检漏仪来检漏。
随着真空获得技术的发展,真空应用日渐扩大到工业和科学研究的各个方面。真空应用是指利用稀薄气体的物理环境完成某些特定任务。有些是利用这种环境制造产品或设备,如灯泡、电子管和加速器等。 这些产品在使用期间始终保持真空;而另一些则仅把真空当作生产中的一个步骤,最后产品在大气环境下使用,如真空镀膜、真空干燥和真空浸渍等。
真空的应用范围极广,主要分为低真空、中真空、高真空和超高真空应用。低真空是利用低(粗)真空获得的压力差来夹持、提升和运输物料,以及吸尘和过滤,如吸尘器、真空吸盘 。
中真空一般用于排除物料中吸留或溶解的气体或水分、制造灯泡、真空冶金和用作热绝缘。如真空浓缩生产炼乳,不需加热就能蒸发乳品中的水分。
真空冶金可以保护活性金属,使其在熔化、浇铸和烧结等过程中不致氧化,如活性难熔金属钨、钼、钽、铌、钛和锆等的真空熔炼;真空炼钢可以避免加入的一些少量元素在高温中烧掉和有害气体杂质等的渗入,可以提高钢的质量。
高真空可用于热绝缘、电绝缘和避免分子电子、离子碰撞的场合。高真空中分子自由程大于容器的线性尺寸,因此高真空可用于电子管、光电管、阴极射线管、X 射线管、加速器、质谱仪和电子显微镜等器件中,以避免分子、电子和离子之间的碰撞。这个特性还可应用于真空镀膜 ,以供光学、电学或镀制装饰品等方面使用。
外层空间的能量传输与超高真空中的能量传输相似,故超高真空可用作空间模拟。在超高真空条件下,单分子层形成的时间长(以小时计),这就可以在一个表面尚未被气体污染前 ,利用这段充分长的时间来研究其表面特性,如摩擦、粘附和发射等。
自动注汞丸器
现在国内供应的汞丸可根据用户所需进行订制,汞丸的尺寸一致性、圆度也比较好,不易碎裂,能满足自动注丸的要求。设计注汞丸的方案是,在上灯管之前,先把排气图2 自动注汞丸器结构示意围维普资讯http://www.cqvip.com 何荣开:注液汞改造成注汞丸排气机 ...在其运输和注卤丸的操作过程中,都可能吸潮而引起灯的最小电压和再启维普资讯http://www.cqvip.com 6 中国照明电器2003年第2期动电压上升,破坏放电电弧的稳定性,产生光衰快、早期发黑等现象。因此,在注金卤丸器的研制中要注意对卤丸的保护,以免卤丸吸 ...
真空炉内对流加热技术的开发
在真空炉内加热工件时,主要靠发热体和工件之间的辐射传热,所以加热速度慢。在<800℃以下的温度加热时,工作升温滞后的的缺点更加显著,如 φ105mm轴在真空炉内加热至700℃需要120min,实施对流加热仅需80min。而且真空加热15min后轴表面和心部温差为280℃,对流加热 15min后该温差在80℃以内[15]。当负载为散件,并实施密集装炉时,如切削工具1200支(200kg),真空(1×103Pa)加热至590℃需196min,实施对流加热仅需48min,加热过程中表面和心部工具的最大温差,前者为311℃,后者为57℃。 实际生产中,有些高合金钢真空加热速度过慢会导致混晶现象发生。如φ30mm的W6Mo5Cr4V2钢,在加热速度≤5℃/min时有混晶现象发 生。φ20mm的加Co高速钢,在加热速度≤20℃/min时也有混晶现象发生,即使该材料追加退火工序后,在≤5℃/min加热的情况下仍有混晶现象发 生。 为缩短加热时间,改善加热质量,提高加热效率,开发真空炉内的对流加热技术很有必要。具备对流加热技术的真空炉,除原有功能外,还可附加回火功能,带来了一炉多用和灵活生产的好处。 真空炉内对流加热工艺技术系指工件入炉后,排气至规定的真空度,再充入压力为200kPa的惰性气体,把工作从室温加热至 600℃或800℃以下的某温度,如图6所示。该技术的难点之一是炉胆要有良好的密封性以保证高温正压的热气流在均匀加热工件的同时又不至于跑到真空炉的 增冷壁上。换句话说用正压惰性气体加热会带来加热温度不均匀和炉胆热损失大增的缺点如表3所示。为保证正压惰性气体加热的均匀性,则势必要采取用搅拌风扇 强制搅拌,增强气体流动性和循环强度,这就带来了该技术的第二个难点,即该搅拌风扇的材质问题。该强制搅拌风扇不能采用金属结构,因为这会在随后的高温 (>1000℃)加热时带来变形和使用寿命问题。国际上这种风扇采用高强度的复合碳纤维制成,既轻便,又有足够的高温强度和耐高温气体冲刷的性能,保证了 一定的使用寿命。
图6 真空炉内对流加热时温度和压力的关系表3 真空炉内压力和热损失及温度均匀性之间的关系
压力/Pa
热损失/kW
温度均匀性/℃
压力/Pa
热损失/kW
温度均匀性/℃
10-6
7
±6.5
3×105
36
±22.5
1×105
22
±13.0
5×105
63
±45.0 至今,真空炉内对流加热炉胆的结构有两种,一种是单循环风扇,如图7。该结构的中的发热体4是由高强度复合碳纤维制成的一端封闭的管材,管壁上开 有多个小孔。对流加热时,正压热气流从分布于炉胆圆周的管状发热体管壁上众多小孔喷向工件,经同轴开关阀1吸入风扇,再被扇叶加压,压入发热体管中形成循 环。另一种是双循环风扇结构,如图8。加热风扇1在冷却阶段可退出加热室,只在加热阶段进入加热室,完成800℃前的对流加热后即行退出热室。这种结构的 优点是保证风扇的使用寿命,缺点是结构复杂。该结构发展的趋势是加热风扇位移至冷却风扇成垂直的方向,扇叶由碳纤维制成,风扇完成对流加热后不再退出加热 室。
图7 真空炉内对流加热炉胆结构示意图 图8 真空炉内对流加热结构示意图 1?同轴开关阀2?密封绝热门3?冷却器 1?加热循环风扇2?炉胆3?喷嘴4? 4?发热体(兼气体喷嘴) 4?发热体5?冷却器6?冷却循环风扇 7?喷嘴塞
定位电极
在金卤灯压封工艺过程的实际操作中可以看到,放电电极的极间距主要是靠压封设备上的电极插装头和电弧管玻壳端面来定位。 ... 靠通常的玻壳端面定位电极的方法是很难做到的;再者,对于35 w 及以下更小功率金卤灯、汽车金卤灯、特别是超高压汞灯而言,由于 ...样就有几方面的可能引起放电极间距的累计误差。夹模电极插装头图1 电极伸入玻壳内高度定位示意图1.1 放电电极的误差金卤灯的电极一般由3部分焊接而成:电极头、钼片、钼杆。在制作过程中必须要求每一部件的尺寸精确控制在允许公差范围内,才能使得焊接 ...
真空技术
真空技术是建立低于大气压力的物理环境,以及在此环境中进行工艺制作、物理测量和科学试验等所需的技术。真空技术主要包括真空获得、真空测量、真空检漏和真空应用四个方面。在真空技术发展中,这四个方面的技术是相互促进的。
真空是指低于大气压力的气体的给定空间,即每立方厘米空间中气体分子数大约少于两千五百亿亿个的给定空间。真空是相对于大气压来说的,并非空间没有物质存 在。用现代抽气方法获得的最低压力,每立方厘米的空间里仍然会有数百个分子存在。气体稀薄程度是对真空的一种客观量度 ,最直接的物理量度是单位体积中的气体分子数。气体分子密度越小,气体压力越低,真空就越高。但由于历史原因,量度真空通常都用压力表示。
远在1643年,意大利物理学家托里拆利发现,真空和自然空间有大气和大气压力存在。他将一根一端封闭的长玻璃管灌满汞,并倒立于汞槽中时,发现管中汞面 下降,直至与管外的汞面相差76厘米时为止。托里拆利认为,玻璃管汞面上的空间是真空,76厘米高的汞柱是因为存在大气压力的缘故。
1650年,德国的盖利克制成活塞真空泵。1654年,他在马德堡进行了著名的马德堡半球试验:用真空泵将两个合在一起的、直径为14英寸(35.5厘 米)的铜半球抽成真空,然后用两组各八匹马以相反方向拉拽铜球,始终未能将两半球分开。这个著名的试验又一次证明,空间有大气存在,且大气有巨大的压力。 为了纪念托里拆利在科学上的重大发现和贡献,以往习用的真空压力单位就是用他的名字命名的。
19世纪中后期,英国工业革命的成功,促进了生产力和科学实验发展,同时也推动了真空技术的发展。1850年和1865年,先后发明了汞柱真空泵和汞滴真 空泵,从而研制成了白炽灯泡(1879)、阴极射线管(1879)、杜瓦瓶(1893)和压缩式真空计(1874)。压缩式真空计的应用首次使低压力的测 量成为可能。
20世纪初,真空电子管出现,促使真空技术向高真空发展。1935~1937年发明了气镇真空泵、油扩散泵和冷阴极电离计。这些成果和1906年制成的皮拉尼真空计至今仍为大多数真空系统所常用。
1940年以后,真空应用扩大到核研究(回旋加速器和同位素分离等)、真空冶金、真空镀膜和冷冻干燥等方面,真空技术开始成为一个独立的学科。第二次世界大战期间,原子物理试验的需要和通信对高质量电真空器件的需要,又进一步促进了真空技术的发展。
在地球上,通常是对特定的封闭空间抽气来获得真空,用来抽气的设备称为真空泵。早先制成的真空泵,抽气速度不大,极限真空低,很难满足生产和科学试验的需 要。后来相继制成一系列抽气机理不同的真空泵,抽速和极限真空都得到不断的提高。如低温泵的抽气速率可达60000升/秒,极限真空可达千亿分之一帕数量 级。
为了保证真空系统能达到和保持工作需要的真空,除需要配备合适的、抽气性能良好的真空泵以外,真空系统或其零部件还必须经过严格的检漏,以便消除破坏真空的漏孔。低(粗)真空、中真空和高真空系统一般用气压检漏 ;对于超高真空系统,在采用一般检漏法粗检以后,还要采用灵敏度较高的检漏仪,如卤素检漏仪和质谱检漏仪来检漏。
随着真空获得技术的发展,真空应用日渐扩大到工业和科学研究的各个方面。真空应用是指利用稀薄气体的物理环境完成某些特定任务。有些是利用这种环境制造产品或设备,如灯泡、电子管和加速器等。 这些产品在使用期间始终保持真空;而另一些则仅把真空当作生产中的一个步骤,最后产品在大气环境下使用,如真空镀膜、真空干燥和真空浸渍等。
真空的应用范围极广,主要分为低真空、中真空、高真空和超高真空应用。低真空是利用低(粗)真空获得的压力差来夹持、提升和运输物料,以及吸尘和过滤,如吸尘器、真空吸盘 。
中真空一般用于排除物料中吸留或溶解的气体或水分、制造灯泡、真空冶金和用作热绝缘。如真空浓缩生产炼乳,不需加热就能蒸发乳品中的水分。
真空冶金可以保护活性金属,使其在熔化、浇铸和烧结等过程中不致氧化,如活性难熔金属钨、钼、钽、铌、钛和锆等的真空熔炼;真空炼钢可以避免加入的一些少量元素在高温中烧掉和有害气体杂质等的渗入,可以提高钢的质量。
高真空可用于热绝缘、电绝缘和避免分子电子、离子碰撞的场合。高真空中分子自由程大于容器的线性尺寸,因此高真空可用于电子管、光电管、阴极射线管、X 射线管、加速器、质谱仪和电子显微镜等器件中,以避免分子、电子和离子之间的碰撞。这个特性还可应用于真空镀膜 ,以供光学、电学或镀制装饰品等方面使用。
外层空间的能量传输与超高真空中的能量传输相似,故超高真空可用作空间模拟。在超高真空条件下,单分子层形成的时间长(以小时计),这就可以在一个表面尚未被气体污染前 ,利用这段充分长的时间来研究其表面特性,如摩擦、粘附和发射等。
硬玻H4卤钨汽车前照灯自动生产线的消化吸收与改进
王永忠 陈洪顺
摘 要:阐述了对韩国硬玻H4卤钨汽车前照灯自动生产线的引进,消化吸收和国产化过程,以及在技术工艺、生产和管理等方面所取得的成果.关键词:硬玻 自动线 卤钨汽车前照灯作者单位:王永忠(镇江金象照明电器有限责任公司,镇江,212006) 陈洪顺(镇江金象照明电器有限责任公司,镇江,212006)
参考文献:
[1]Proc.IEE.顾乐民译.1979,117(10)[2]周太明.光源原理与设计
汞钠灯封口车
产品介绍:汞钠灯封口车是制造汞灯.钠灯等成灯的主要设备之一.该设备有如下特点: 1. 气动控制.操作简便. 2. 摩擦离合器.急转急停. 3. 封口一致性好.成品率高. 4. 适用广泛.可用于直管型泡壳.球型泡壳等多个品种.
多功能低温浴槽
多功能低温浴槽,适用于科研、生物、物理、医药、化工等部门进行低温实验。不锈钢内槽空间大,加入防冻工作液体,可在槽内直接进行低温实验。选配循环泵,可将低温液体进行外循环,给相关设备提供低温条件。采用进口全封闭制冷机,制冷量大,高效可靠,噪音低; 特殊设计的环绕式制冷器,温度更均匀
露点仪
瑞士MBW露点仪基于光学过冷镜面原理,能消除因惯性和滞后造成的误差,保证了直接、精确的测量气体真实的湿度。系统性能稳定,无需经常校准。镜面上的凝结物可由“自动检查”与加热装置清除,确保测量的高精确性。系统备用1-3级Peltier(皮替尔)制冷,及独一无二、具有专利的“ORIS”系统,能快速、稳定测量极微量的气体湿度。仪器还自备有精度检查和校正装置。
MBW系列露点仪应用领域
烘干、干燥系统:食品、烟草、农业、造纸、化工及制药业
压缩空气系统:压缩机、干燥器、动力传输、气动设备及工具
气体系统:净化室、干燥箱、包装材料、高纯气体及水处理
气象学:户外、室内、气候、新能源的开发与研究
环境测量:大气分析、热处理
电力工业:氢冷发电机系统、SF6气体高压开关、安全系统
金属热处理:焦化、热处理、烧结、淬火
汽车工业:引擎测试、大气监测、尾气分析
科研:冰箱、空调、高压真空技术、过程控制、量热器
测试与校准:容器与室内环境、其它湿度测量仪器的等
DP19露点仪
具有数字显示功能、应用于高压、大容量六氟化硫(SF6)开关设备中气体的现场测量。
DP3-D-SH 露点仪
具有数字显示功能、可用于工业领域和实验室,能持续现场测量。主要检测空气、其它气体及各种混合气体的露点。
DP5-D-SH 露点仪
具有数字显示功能,能精确测量及监控仪器、管道和室内的空气或其它气体的露点及采样口的温度。(推荐为氢冷发电机系统)
DP8-D-SH 露点仪
具有数字显示功能,可同时显示被测气体的相对湿度、温度及露点,能满足工业领域和实验室高精度的要求,可用于校准其它湿度测量仪。
DP30 露点仪
满足高精度要求的空气、气体及各种混合气体的湿度测量。
冷阱
冷阱其特点是:容积大,冷阱材料吸附力强,主要与浓缩干燥器配套使用,吸收浓缩过程中的气体,防止进入真空泵,起到保护环境和真空泵的作用。
冷阱的典型结构 于其结构之处,还取决于所使用的冷壁温度,低温冷壁的温度愈低效果愈好。使用冷阱应遵守一定规则;在加入冷剂前,应将容器抽空到足够低的压强,使可凝性气体被大量排除后再加入冷剂;在使用过程中,由于冷剂的损耗而使冷剂液面不断下降,露出无冷剂接触的壁面,这些表面的温度回升,使已被冷凝的蒸气重新蒸发,所以要设法使冷剂的液面尽量处于恒定位置。常用冷剂的制冷温度见表5。 金属冷阱中,盛装冷剂的容器一般用不锈钢制成,在其壁上焊上若干捕集片,以增大低温壁板的表面积和阻挡蒸气分子进入真空室的作用。图39是一种长效冷凝捕集器,它采用双层结构,在中间装有冷凝捕集片,其特点是捕集效果好,不需要经常加液氮。图40的结构具有较大流导,可防止蒸气分子向上蠕动。它有两层结构,内装一盛冷荆的冷剂筒,其间具有双百叶窗式捕集片组,具有较好的阻挡蒸气分子的作用。图4l是一种高效冷凝捕集器,这种结构的特点是在其上法兰口处,有一个防止油分子爬移的障筒,它可使返油率大为降低,其结构紧凑,捕集效率高。图42是一种常见多用的冷凝捕集器,靠金属热传导杆3,将捕集片2与冷剂容器连接起来进行热交换而使捕集片2保持低温状态。图43是另一种金属冷阱,它结构简单,效果较好。图e中的件 l、2是防止蒸气分子通过冷阱飞入真空室的障板。图44是一种复合式冷阱,其特点是在中央设置了一个拇指形的冷阱筒,筒内装冷剂。在筒周围焊有两层挡油筒环,气路如箭头方向所示,捕集效果很好。此外在结构上还设置了分子筛盒(上、下各一处),可存放分子筛,以在冷凝的基础上再复加上吸附效应。图45是中心带有液氮罐的冷阱。 玻璃冷阱采用杜瓦瓶的形式,分为两层或多层,两层之间抽成高真空,以降低热传导损失。瓶内壁靠近真空的一面,若有条件时还可镀一层银,以加强热反射。玻璃冷阱的型式很多.图46是常见的几种玻璃冷阱的结构.
手套箱有机溶剂吸附器的作用
手套箱应用中,很多用户(如化学试剂/锂电生产)在手套箱内放有有机溶剂,时间长了有机溶剂会对水/氧探头造成损坏,影响水/氧含量的测试精确度,有时偏 差很大,有机溶剂吸附器能很好的吸收挥发出来的有机溶剂,保护水氧测试的准确度.
水分析仪
环净化手套箱操作系统技术协议一、 技术要求:该系统装置共有两大部分组成:操作箱体,循环净化装置。采用目前国际国内最先进 的工艺流程和加工制造技术,合众家之所长,且专门针对聚合物锂离子电池的特殊要求,开发出具有使用气源极为节约,操作箱体环境保持稳定,(电池出入交互后 环境指标可以很快达到要求),系统还原再生可以非常彻底,故还原后使用时间长以及净化深度深等一系列优点。1、 整体设备工作性能:处理惰性气体量12nm3/h。补充惰性气源纯度99.99%。 纯化后惰性气体纯度:o2≤1ppmh2o≤1ppm(即d.p. ≤-76℃)2、 操作箱体:外形尺寸(长×宽×高)9000×1200×1600mm,由四节全不锈钢箱体组合成一个封闭的箱体,共计8个工位,对面操作,带有倾斜的操作 面和可拆卸的安全有机玻璃(厚度40mm)前窗,可在设备初装时或者箱体受到严重污染时对其进行抽真空,从而使操作环境迅速恢复生产要求;密闭箱体两端分 别焊接真空过渡室(直径400 mm,长度800 mm),室内配备移动载物盘;并且一端另配备一个小真空过渡室(直径100 mm,长度 300 mm)。八套照明系统,一个箱内电源接口,预留十个左右dn25卡箍式法兰接口,方便客户配制管道。3、循环净化装置:外形尺寸(长×宽 ×高)1700×1300×2000mm,由两组双柱净化单元集成,两组交替使用,一组还原再生时,另一组正常使用,从而确保系统一直处于正常工作状态。 选用的吸附剂和脱氧剂具有脱水脱氧深度高,寿命长,不粉碎等诸多优异性能。采用plc集中控制,主气路全部采用进口优质阀门。二、工艺流程(如图所示): 来自手套箱的回收氩→活性碳吸附器→循环风机→ [i组工作 干燥器→除氧器]→纯化后氩气回到手套箱。与此同时可进行ii组再生,钢瓶氮氢气→减压阀→ [ii组再生 除氧器→干燥器] →放空(抽真空)以上两组可以通过plc自动控制交替工作和再生,用户根据实际使用状况确定切换频率;也可以采用按钮人工切换。微 量氧分析仪、微量水分析仪(露点仪)通过切换气体取样口既可以检测净化装置出气口指标,亦可检测净化装置进气口指标(操作箱体出气口即箱体环境的实际指 标)。检测气流不直接放空,采用回收管道返回系统,实现整个系统无额外损失,确保系统有效运行,检测仪器响应迅速,示值稳定。管道直径,高度,容器壁厚,法兰及密封垫等性能均符合国家相关安全标准。三、供货内容?、操作箱体 1套1、四节全不锈钢箱体组合成一个封闭的箱体,共计8个工位。2、两端各有一个不锈钢制成的真空过渡室(直径400mm,长度800mm),内置移动载物托盘。3、一端另配备一个小真空过度室(直径100 mm,长度300 mm)。4、8副耐腐蚀橡胶手套(另配送2副手套备用),5、8套照明系统6、一个箱内电源接口 220v。7、预留十个左右dn25卡箍式法兰接口。8、箱体支架及支架脚轮。9、8副抽真空平衡压盖。10、8组抽真空支撑杆(抽真空时使用,正式工作后可拆卸)。?、循环净化装置 1套1、内含除氧器和干燥器各贰只,筒体为1cr18ni9ti不锈钢材质,内置管状不锈钢电加热器和热电偶,内盛脱氧剂和干燥剂,使用寿命5年以上。复式流程连续工作一个周期后,工作和再生用plc自动控制,也可以人工切换。再生加热切换时间和温度均为自动控制。气动阀、电磁阀和plc等均为优质进口件。2、循环风机 1台,风量12~18 nm3/h 功率小于0.5kw、(风机与系统采用柔性管连接且绝对密封、噪音小)。3、微量氧分析仪 1台(通过切换气体取样口既可检测纯化后氩气,也可检测操作箱体实际环境)。4、微量水分析仪(露点仪) 1台(通过切换气体取样口既可检测纯化后氩气,也可检测操作箱体实际环境)。 5、活性碳吸附器 1台(另配一组活性碳棒,以备更换交替使用)6、高精度真空泵 1台;7、微型压缩机1台。四、系统运行外设(由客户供应)1、设备安装场地面积(长×宽×高):9000×2000×2400 mm; 或 6500×3200×2400 mm。2、整套设备总重约 3,500 kg。3、电源:总功率8 kw,380/v,3ø。4、不间断压缩空气气源:0.5 mpa(若客户配置微型压缩机,可省略)。5、系统补充惰性气体,纯度99.99%,用量由客户使用过渡仓
微量氧分析仪
微量氧分析仪(简称TO-201)是按照GB/T6285《气体中微量氧的测定 电化学法》国家标准规定,基于电化学法原理设计、研制的专用分析仪。它采用银、铅电极和氢氧化钾电解液组成的原电池作为检测器,主要用于中性或碱性气体中微量氧的分析测定。本仪器具有结构合理、稳定性好、维修方便、重现性好,操作简便等特点。
Gas Purification System
The purification system is shown in figure . It consisted of commercially available Oxisorb and Hydrosorb filters . The gas was delivered in individual bottles. It was passed through the filters and liquefied into two 220 litre stainless steel barrels. All transfer lines and vessels were carefully cleaned and baked out before use. The complete system was evacuated and leak tested down to mbar l/s to avoid contamination with air during the purification. To remove dust particles coming from the filters, the transfer line in front of the receiving barrels contained a self-made dust filter with a pore size of 0.5 m. Each barrel was mounted inside a Dewar which was filled with liquid nitrogen so that the krypton froze after liquefaction. Liquid nitrogen was automatically topped up during krypton storage. The flow rate of krypton gas through the filters and the pressures before and after the filters of the gas purification system were monitored. In this way, conditions could be kept constant and the amount of liquefied krypton was known.
溶剂净化系统(SPS)

溶剂净化系统(SPS) 溶剂净化系统是不使用传统的蒸馏方法提纯或者改良溶剂和化学药品的设备,您可以购买低价、低纯度的工业级溶剂,然后将它们使用溶剂净化系统提纯改良至实验室等级或更高的等级,而取代购买昂贵的高纯度的溶剂。这不仅仅会降低成本,而且可以确保随时供应足够的所需纯度的溶剂。 可以提纯的溶剂有: Benzene、Hexanes、Hexane、Toluene、THF、Pentane、Ethers、 Dichloromethane、Acetonitrile、Methylene Chloride、Methanol、Pyridine、Deuterated、DMF、DME、Chloroform、Hephane、Chlorobenzene etc.
溶剂净化系统 SPS-400
可将许多有机溶剂中的 O2 和 H2O 除去
完整的、易于操作系统
比蒸馏更安全的方法
最高水平的操作安全
可与 Etelux 手套箱连接或者直接使用单独系统
可同时净化多达五种溶剂
在净化材料更换前每种溶剂可净化 400 升
有效节约空间
符合欧洲标准的防火柜
优质部件和安装
外露铝质框架
304号不锈钢圆筒
双筒设计
容量200升
全不锈钢管道
多种气体
Schlenk /真空双模式
带箝位的支架
不锈钢伸缩分配线
玻璃适配器
定向阀
计量阀
接头套管装置和阀门
接头套管沉淀物过滤器
压力/真空指示器
紧急切断阀
泄压阀
彩色标识的快速断开键
系统接地和保护
溶剂回收系统
气体净化系统
手套箱是HID灯生产中用于需要高纯气体保护环境时必要的 设备(本设备也可应用于其它行业需要高纯气体保护环境时,比如生物工程和锂电池制造等),比如高压钠灯电弧管生产、金属卤化物灯电弧管生产中的金属卤化物 药丸的制备和分装、一些特种灯的制造均需要使用手套箱。在国外有些金属卤化物灯生产工艺的全过程都在手套箱里完成(主要在小功率和超小功率金属卤化物灯电 弧管的生产上)。目前这种设备国内外都有生产,结构和原理大同小异。我们参考国外的设备,使用国产优质材料,部分使用进口材料而制造的手套箱已用于了国内 一些厂家的HID灯的生产线上。下面介绍一下我们手套箱的结构和原理,仅供参考。
一. 结构
主要有以下部分组成:
1. 不锈钢箱体
(1) 箱体为1Cr18Ni9Ti热轧不锈钢板焊接而成,表面抛光,密封性能良好。标准尺寸为:1000(长)×650(高)×600(宽),长度可按每一米加长。也可按客户需要定制。
(2) 过渡舱为双过渡舱结构,均为不锈钢材料制成,仿国外舱门结构。采用2X-4机械真空泵为过渡舱抽真空,阀门均采用真空电磁阀。
(3) 有机玻璃面板,上有尼龙丝丁长臂手套作为操作手套。上方有日光灯作为照明。
(4) 手套箱进出口采用高真空手动蝶阀作为隔离阀。进出气口装有高效防尘装置。
2. 循环再生净化系统
可有两套系统或一套系统,参见STX-2000型手套箱示意图和STX-1000型手套箱示意图。
(1) 净化器外壳用不锈钢制成,内部为一特殊结构,脱氧采用FEN型吸氧剂,脱水采用4A分子筛,此两种产品均为中科院化学物理所研制的性能为输入气体水氧含量1000PPm,输出气体水氧含量0.1PPm。净化器还集成了加热器。
(2) 循环泵采用不锈钢外壳,配水冷系统,循环能力50m3/h。
(3) 主阀采用电气动高真空挡板阀,其它阀门采用真空电磁阀。
3. 电器控制系统
(1) 采用日本三菱可编程序控制器作为自动控制中心元件。
(2) 采用霍尔微压变送器作为控制箱体压力的控制器。
(3) 采用高可靠的其它电气元件。
二. 原理
1. 箱体内压力可有上下限控制,达到上限时位于手套箱上面的减压阀打开向外排气,达到下限时位于系统的增压阀打开钢瓶里的气体通过净化器向手套箱里面充气。从而达到平衡手套箱中压力的目的。
2. 在手套箱初用和手套箱内水氧含量高时就需运行再生过程,因为我们认为分子筛和吸氧剂此时已饱和,失去了脱水和脱氧的能力。再生是为了把吸氧剂里面吸的氧气 和分子筛里面吸的水份赶出来,使它们重新拥有活性来继续吸水和氧。再生时主阀关闭,按下再生按钮此时90%的氮气和10%的氢气充入净化器并通过放空阀排 出,同时净化器内的温度从室温开始升到250℃并保温几个小时,然后继续通氮气和氢气,同时净化器内的温度从250℃开始升到350℃并保温几个小时,再 下来就关闭氢气阀,只用氮气把净化器内的氢气吹光,同时降温到室温,这样就是再生的全过程。以上的过程除了钢瓶的阀门和按钮要人工操作外其它均为自动完 成。
3. 再生后就可进行循环净化,按下循环泵按钮,此时手套箱内的气体经过出口阀,循环泵,第一只主阀,进入净化器中。分子筛和吸氧剂脱去水份和氧份,脱过水氧的气体再经过第二只主阀和进口阀进入手套箱使手套箱内的水氧含量持续地往下降直到要求。
以上就是手套箱的工作过程,仅供参考。总之它的工作原理就象用海棉吸水的原理。STX-2000型手套箱为双净化系统可连续工作,而STX- 1000型手套箱只有一套净化系统再生时不能使用。用户可选择加不加水氧含量测试仪和选择国产或进口的仪器,但进口的仪器价格比较高。
金卤灯快排车
产品介绍:KP---1OOO型快排车是制造金卤灯电弧管的主要设备之一.本设备具有以下特点: 不锈钢真空系统由:4个日本SMC高真空无泄漏阀门、高真空规管和优质国产机械真空泵成都国投南光2XZ-4B(可配德国莱宝泵)组成。具有良好的气密 性,漏率≤3×10-7Pa.L/S。系统经过若干次疲劳实验,现在的系统均经过严格的清洗和电抛光处理具有更良好的系统洁净环境。系统的连接采用不锈钢 硬连接(双卡套结构)更能保证系统的气密性. 电气控制采用日本MITSUBISHI公司产的可编程序控制器作为自动控制器,其它主要采用欧姆龙等国际知名公司的产品。因此本快排车的电气控制部分具有 体积小、控制精度高、响应速度快和高可靠性等特点定量充气量:0Toor-200Toor可调。可适应制造50W-1500W金属卤化物灯电弧管.单班产 量:实际产量≥500只/班(每班8小时). 改进后的设备可冲入目前使用广泛的Kr85放射性气体,以提高小功率电弧内管的启动性能!
高强度气体放电灯
金属卤化物灯是高强度气体放电灯,是21世纪环保型绿色照明的核心产品,在国内有广阔的市场,并在欧美市场有着极为巨大的潜力。而在目前,作为全国 电光源大型骨干企业的佛山电器照明股有限公司正是金卤灯生产行业中的佼佼者。该公司自2001年以来引进了美国创新光源国际有限公司的先进技术软件和成套 生产设备,生产的金卤灯产品质量已达到国际同类产品的质量水平。目前年产量已达到50万只。年产值达到了2500万元。出口内销情况均表现良好。
金属卤化物灯有着光效高、寿命长、显色性能好、节电效果显著等特点。它适合于体育场、展览中心、大型百货商店、游乐场、街道及广场照明。作为绿色照明产 品,它的发展前景是巨大的。佛山电器照明股份有限公司敏锐的看到了这一点。在2001年5月的股东大会上,该公司审议批准了投资360万美元引进金属卤化 物灯生产设备和技术软件。自此之后,该公司穷半年之力。完成了技术人员的出国培训、设备安装调试等工作。在2002年3月。该公司的金卤灯系列产品正式开 始投产。四月份产品在广州春交会进行了亮相。与此同时,公司还再次增加投资了100万美元。引进金卤灯设备进行扩大生产。到现在,公司的金卤灯系列产品品 种从单端到双端。规格从50W到1000W都能够进行大规模生产。产品品质优良,各项指标稳定。在国内同行业中有着举足轻重的地位。
金卤灯是目前国际上最流行的第三代电光源。据了解,金卤灯将向无排气管金卤灯和陶瓷金卤灯方向发展,生产工艺技术和自动化装备水平将变得更高。在今后的发 展中,随着我国绿色照明工程的实施,金属卤化物灯将作为重点推用,其市场前景十分广阔。预测在未来30年~50年内,金卤灯仍保持稳步增长的发展趋势。而 不断进取着的佛山电器照明股份有限公司,也定会随之进一步的发展和壮大。伴着大家一起进入绿色照明的新时代!
高压钠灯用一体化半透明氧化铝管研制成功
6月16日,中国科学院召开了由王士维研究员承担的“高压钠灯用一体化半透明氧化铝管”科技成果鉴定会。 以蔡祖泉教授为主任的鉴定委员会听取了半透明氧化铝管的研制报告、性能检测报告和查新报告,查看了样品,经过讨论形成如下意见:报告的数据充分、 可靠、生产技术分析合理;采用螺杆挤出先进工艺制备素坯管,挤出压力低、表面光洁,保证了品质;并保持圆度和直度;自行设计制造了平移装置,提高了成品 率,为挤出成型的连续化和规模化生产奠定了必要的基础;解决了丝网印刷关键技术,在素坯管上成功地印刷起跳线;干压法制备端塞,并与素坯管共烧结。所制备 的一体化氧化铝管在圆度、直度、透过率、显微结构以及寿命等方面均达到了GE公司的技术标准。 与会专家一致认为,一体化半透明氧化铝管规模化生产的挤出成型和共烧结等技术基本成熟。该成果处于国际先进水平,属国内领先。
高压钠灯
21世纪绿色照明,世界第三代照明高光效高压钠灯。其放电管采用抗钠蚀的半透明多晶氧化铝陶瓷管制成。工作时发出金色光,有光输出高,发光效率高,寿命 长,透雾性能好等优点。广泛应用于道路、机场、码头、车站、广场及工矿企业照明。第三代光源它作为一种理想的节能新光源,在世界上受到普遍的重视、发展和 应用。作为一种新的光源我国年用量五千万只,现产量900万只。每年需求量以15%的速度递增。此产品达国际标准,可出口东南亚等国家。 性能指标: 高压钠灯燃点需配用同功率的镇流器,为提高光的利用率和防止雨雪的淋袭,应配合适的灯具。 高压钠灯分外触发启动和内触发启动两种。对外触发启动灯泡,使用时必须配备触发器。 生产设施要求: 1、 生产用设备是以生产高压灯用的专用设备,及焊接系统为主,专用配套设施,生产线面积为150平方米,基础配套设施50平方米,原材料及成品库150平方米。 2、 车间要求:卫生整洁,通风性良好。 3、 设备全套生产线包括:专用生产线,焊接系统K1,密封接口机,灌装系统及其它辅助设备,总共146万元。 4、 能源要求:电力容量20kw,液化器、氧气,需要空气(用空气压缩机),生产车间必须配备水源(普通自来水即可)。 5、 产品利润估算(以NG250w为参照)a) 产品成本(单支)(含原料、水电工资、税收、运输等)。综合成本25元,产品包销。回收价格30 ~ 35元。年产量20万只,年利润100 ~ 200万元,流动资金20万元。生产一年收回投资.b) 转让方式及产品的生产保证 以提供技术设备,安装调试,人员代培的一条龙服务方式。生产技术费用总计80万元。其中包括设备费71万元,技术费用6万元,安装调试费用3万元。
关于150W高显色型陶瓷金卤灯调光特点的研究v
前言近年来随着环保、节能的发展,人们也开始追求HID灯的高效性和耐用性。最近,处于减少二氧化碳排放、保护环境的考虑,人们对高效、耐用并能调光点灯 的灯具的要求越来越高。这种要求对于注重高显色性的陶瓷金卤灯等也不例外。本报告针对尽可能不破坏其显色性的条件下如何对高显色型陶瓷金卤灯进行调光展开 了研究……
照明业界中的新宠??陶瓷金卤灯
一、引言
高压气体放电灯(HID)是至今为止光效最好的电光源,它包括高压钠灯和金属卤化物灯。高压钠灯光效很高,达120lm/w,但其色温较低,约2000K左右,其光线呈橙黄色,显色指数不高,只能用作道路或建筑物的泛光照明;金属卤化物灯的色温在3000~5600K可 调,而且显色指数很高,照明效果很好,故目前大量用于广告照明,其缺点是发光效率稍低。电孤管是用石英玻璃管做的,耐腐蚀性较差,工作温度较低,如何把高 压钠苯透明氧化铝管技术移植到金卤灯上面来?多年来照明业界人士一直为实现这个梦想而努力。一个重要的思路是将高压钠灯的透明氧化铝陶瓷电弧管技术移植到 金卤灯中来,用工作温度高,高温物理、化学性能更稳定的透明氧化铝陶瓷代替石英玻璃。
1994年, 荷兰飞利浦公司解决了主要的技要术难题,首先推出了陶瓷金卤灯,使之成为商业照明和展示照明的最新光源。一石激起千层浪。美国通用公司、德国欧斯朗公司也 紧紧跟上,花巨资进行研究开发,经三家公司的数手努力,陶瓷金卤灯的结构更合理,技术更成熟,性能有了更大的提高,在室内外照明上进行了大量的推广应用。 目前,陶瓷金卤灯是上述三大照明巨头重点推介的新产品。
二.陶瓷金卤灯的特点
现将陶瓷金卤灯与其他灯具的性能比较为表:
灯具名称
光效(lm/w)
显色指数(ka)
色温(K)
寿命( h )
体积
陶瓷金卤灯
90~100
80~96
3000~5600
9500~15000
小
石英金卤灯
75~95
70~85
3000~5600
6000~9000
较小
石英卤铝灯
25
100
3000
2000~5000
小
白炽灯
15
100
2800
1000
大
1) 光色和显通性:
陶瓷金卤灯使用通明氧化铝陶瓷作孤管壳,可在1500度的高温下工作而不会与发光物质起化学反应,因而比石英玻璃有更好的物理、化学性能和热稳定性,充入的卤化物的蒸汽压更高,因而使灯的显色性更好,光色更稳定。
2) 发光效率
陶瓷金卤灯的电弧管可以做得很小,比如50w可以做得和石英卤钨灯泡(石英射灯)一样小,但它的工作温度可高达1200,气压更高,因而发光效率更高:一只50W的陶瓷金卤灯发光的亮度相当于4只50W的石英射灯的高度,节能效果非常大。
3)寿命及其他
金卤灯的使用寿命主要取决于电孤管内钠之素损耗的速度。由于氧化铝陶瓷在高温下几乎不和钠反应,因此陶瓷金卤灯的寿命比石英金卤灯长一倍左右,一般可达15000个小时,此外,陶瓷金卤灯的电孤管由于采用特殊工艺制成,其尺寸精度高、偏差小、使灯的性能一致性比石英金卤灯好,另外,氧化铝透明陶瓷过滤紫外线的功能更强,故陶瓷金卤灯几乎不含紫外线成分。
三、陶瓷金卤灯的应用
近几年来,欧美发达国家的陶瓷金卤灯大量进入商业应用领域:
1) 室内照明:
20~70W小功率陶瓷金卤灯,由于其体积和石英射灯相当,当光效高、光色好、无紫外线,因此可取代石英射灯和白炽灯广泛用于商场、展厅、厨房、酒店、办公室,家庭等场合。
2)室外照明:
150~400W中,大功率型陶瓷金卤灯,已广泛用于道路、广场、车间、舞台和运动场,取代传统的钠灯和石英金卤灯,具备更好的光色和更长的寿命。
3)汽车前灯:
用30W的小功率陶瓷金卤灯,可取代目前100W的石英射灯用于汽车的前大灯,在欧美发达国家已逐步推广。它比氙灯光色好,比石英射灯光效高而节能,瞬间启动等诸多的优点,因此业界著名照明公司均将它作为利润的增长点而着力推广。它也可以作为一个推广点,用来衡量一个国家照明行业的水平。由于国外的技术封锁,至今我国无 一家企业引进技术或生产设备,为了尽快赶上国际先进水平,我国的有关部门正在大力呼吁和支持各方面进行陶瓷金卤灯的开发研究,尽快批量生产。
陶瓷金卤灯的核心技术在于圆形或椭圆形透明氧化铝陶瓷电孤管的制造工艺,国外著名照明公司均有专利保护自主产权,对我国实行技术封锁。目前一只20~70W的陶瓷金卤灯泡,进口价在250元人民币以上,堪称天价。
为了打破国外的技术垄断,本公司以天下为已任,组织有关专家和企业联合开展自主创新研究,几经艰辛,目前已掌握一套全新而独特的成型技术、不久,即将进行批量生产,彻底打破洋人的技术封锁,让中国制造的陶瓷金卤灯大放光彩!
等离子焊机
等离子焊机具有焊接速度快,焊缝美观,焊缝质量好,成本低等优点,等离子焊接已广泛运用于设备制造业中对各种型式的接头进行焊接、医疗设备、真空装置、薄板加工、波纹管、仪表、传感器、汽车部件、化工密封件等。 微束等离子焊更是在实际运用中显露出巨大的优势,其焊缝质量可与激光焊比肩。微束等离子技术已成功的应用于大多数金属的焊接,如 钢、不锈钢、各种合金钢、铜、镍、钛、钼、钨、金、铂、铑、钯等各种金属及其合金材料。
等离子焊机系金卤灯生产线设备之一,用于用于HID灯或UHP灯生产中内管的第二端封口。操作过程为两个或三个等离子头,配套抽充台使用,另外外部再配套SiO2除尘器。
等离子焊机
欧司朗公司刘剑平博士光源技术创新与发展趋势的报告,详细介绍了欧司朗公司卤钨灯、平面荧光灯、新型陶瓷金卤灯、汽车金卤 ... 开发应用,包括用于研究的标准手套箱工作站;用于生产的配有高温炉、抽一充气台、等离子焊机、除尘系统的大型手套箱工作站。
投影机产品应用的灯泡
对于日常商务演示和多媒体教学来说,投影机已经成为不可或缺的设备,它还以自身超大的画面和极具震撼性的显示效果逐渐走进了寻常百姓家。但是在人们给予投 影机更多关注的同时,对于投影机的耗材----灯泡了解却十分有限。本文就将针对用户忽视的投影机灯泡做一个介绍。
投影机灯泡是投影机的重要部件之一,没有了灯泡的投影机就如同没有墨盒的打印机一样无法使用。而且投影机灯泡还与墨盒一样属于易耗品,具有一定的使用寿 命,在投影机使用期限中肯定会遇到灯泡的购买和更换问题,因此用户十分需要对您所用的投影机灯泡进行一定的了解。常见的投影机灯泡品牌有飞利浦(型号: UHP)、爱普生(型号:UHE)、欧司朗(OSRAM 型号:VIP)、Matsushita(型号:UHM)、日本优志旺(USHIO 型号:UMPRD/UMVRD/NSH)、日本凤凰(PHOENIX 型号:SHP)、美国奇异(GE 型号:SHL)等。从类型上投影机灯泡普遍可分为金属卤素灯泡和超高压汞灯泡,超高压汞灯泡包括UHP,UMPRD,UHE,SHP等几种。 UHP和UMPRD灯泡是一种理想的冷光源,UHP灯产生冷光,在相同功耗下能产生很大光量,寿命较长,一般可以正常使用4000小时以上,而且亮度衰减很小,当衰竭时可即刻熄灭。由于价格较高,一般被用于中高档的投影机上。 UHE灯泡也是一种冷光源,是目前中档投影机中被广泛采用的理想光源。而且价格适中,亮度稳定,在使用2000小时以前几乎不会衰减。 金属卤素灯泡的优点是价格便宜,缺点是金属卤素灯产生暖光,要求较大功率才能获得与UHP灯同等的光度,半衰期短,一般使用1000小时左右亮度就会降低到原先的一半左右,并且发热量高,对投影机散热系统要求也高,不宜做长时间投影使用。 由于超高压汞灯泡普遍具有亮度较高、发热量小、寿命长等特点,目前以作为主流投影灯泡被广泛采用。建议用户选购使用冷光源的投影机,这将更加有效地保障您 的投影机使用效果,同时节省您的投资。另外不同品牌,不同型号投影机使用的灯泡型号也不同,一般是不能互换使用的,因此用户购买灯泡应选择同品牌同型号的 投影机灯泡,以免造成不必要的麻烦。 最后为大家介绍一种未来很有前途的光源----氙灯。氙灯是利用两电极之间放电器产生的电弧发光的一种光源,目前已应用在高端投影机上。由于氙灯的光谱最 接近自然光,因此可以提供更优异的色彩。氙灯相比UHP灯还有可随时开关的特点,通常UHP灯从点亮到清晰显示需要大约两分钟的预热时间,而氙灯从点亮到 获得清晰的显示所用时间小于60秒,并且氙灯关闭后可马上再次启动,这一点UHP灯是做不到的。
投影机用短弧超高压汞灯的原理
摘要:多媒体投影器技术向小型、轻便、高亮度方向快速发展。配套需要的高亮度短弧光源已进入第三代??短弧超高压汞灯(UHP)时代,该灯近年来由于工艺 改进又有较大的进展。发光电弧缩短至1mm,寿命可望达到1000小时以上,可组成更紧凑的光学系统,为大屏幕液晶背投电视进入市场创造了必备条件。
1 概述
多媒体液晶投影器的核心为液晶片、光机及投影灯。近三十年来这三部分都有了快速的发展(如图1)。
高清晰的液晶片,由10年前对角线3″缩小到现在的0.5″(见图2)。这就为提高光效、减少投影灯反光镜的体积、减少投影灯泡功率创造了有利条件。使投影器得以不断小型化、轻便化。
第一代多媒体投影器采用的液晶片对角线R是3″,接受光的圆锥角为7°~10°,光学系统中的光源,采用极间距离6~7mm的120~250W 交流灯的短弧金卤灯。抛物面反光镜的口径>Φ120mm,才能得到大于3″的均匀光斑。该投影器体积大,重量重(10kg以上),银幕光通量 500lm左右。1995年以后,高清晰度液晶片对角线减少到0.9~1.3″, 光的接受圆锥减少为5°~7°,光学系统需要电弧更短、亮度更高的光源。极间距离1.8~3.7mm,功率125~400W的直流短弧金卤灯取代交流灯, 反光镜的口径缩小为Φ100mm以下。开发出了第二代投影器,该投影器重量减为5~10kg,银幕光通量提高到1000lm以上。
近几年,随对角线0.4~0.7″的高清晰度液晶片问世,对光学系统进一步小型化提出了要求。小型化的光学系统,要求光源进一步紧凑化,并能在 更小的投影面积上,提供更亮的光束,这就需要短弧光源的电弧更短,亮度更高。随之开发出极间距离1~1.5mm的100~200W直流和交流UHP灯口径 为Φ60,随光机透光、聚光效率的提高,200W UHP等理想的银幕光通量达3000lm。
图3给出了UHP灯电弧亮度和250W DC金卤灯电弧亮度的对比。从图3看出UHP灯电弧的亮度是DC金卤灯电弧亮度的3~4倍,显然100~150W的UHP灯只要光学系统设计合理,银幕光通量就很容易达到1000lm以上。
图3上部的两图是极间距离1.3mm和1mm的100W UHP灯电弧亮度;下部为极间距离2.5mm的DC250W金卤灯的电弧亮度。亮度的测量单位为Mcd/m 。
超高压汞灯是利用超高压汞蒸气(1Mpa以上)放电获得可见光的光源。汞蒸气放电在紫外到可见光范围内都有很强的辐射。汞放电的蒸汽压愈高,可见光部分愈丰富,电弧的亮度愈高。
图1 多媒体液晶投影器的原理示意图
图2 LCD的小型化
图3 超高压汞灯的工作原理
图4 放电光谱能量分布
图4给出了不同汞蒸气压下的放电光谱能量分布。
从图4看出,随汞蒸汽压强增加,汞放电的光谱中缺少的红光增加较多。当压强超过10MPa(约100个大气压)时,595nm以上的红光已占有 一定比例;当压强超过15MPa时,红光在可见光谱中的比列已接近金卤灯。经液晶片的调制及光学系统的设计,可以达到合格的彩色还原效果。
超高压汞灯有长弧和短弧两种结构,长弧灯称为毛细管汞灯,灯壳用内径1.8~2mm的壁厚石英管制成,该等工作气压5~20MPa,已用于彩色 现实器件的荧光屏制版和其他照相制版工艺。原有的短弧超高压汞灯,极间距离0.2~8mm,功率50~4000W,主要用于荧光显微镜、全息照相、集成电 路光刻制版等。这种灯管压较低,电流较大,汞蒸汽压不够高,红光不够,不适用投影器。适用于投影器的UHP灯,汞蒸汽压超过15MPa,灯管压降 60~80V。对100~150W的灯,灯工作电流1.5~2.2A,按此电流设计的电子开关电路的交流或支流供电电源体积较小,重量较轻。实验证明,要 达到上述参数,灯内的汞放电等离子体的电位梯度应大于500V/cm,对应灯的极间距离应小于或等于1.3mm。UHP灯从图5看出灯腔体内要达到 20MPa(200大气压)要求冷端的最低工作温度不低于900℃,显然灯水平燃点,腔体的上部工作温度已大于1000℃,这样高的工作温度已接近一般石 英管的软化点,所以必须选用SiO2含量大于99.99%以上的高纯石英管才能达到工艺要求。在100~150W功率下,灯壳外径应小于或等于Φ11,内 腔为Φ5~6,壁厚应≥2.5mm,才能维持900℃以上的工作温度,承受内腔200个大气压力的水蒸气,而不会在寿命期内爆炸。
从图6UHP灯的光谱能量分布可以看出,灯的色温为8000K,显色指数只有56,光色偏兰。兰、绿光和红光的比例偏高。但通过兰、绿光的LCD片及滤光片的调节效应,损失一部分绿光和兰光。红光全部用上,可实现正常显现图像彩色还原所需的红、绿比和红、兰比。
图5 UHP灯泡的结构示意图
图6 UHP灯的光谱分布及红、绿、兰三片LCD有效的光谱区域
HID灯知识总汇
氙气气体放电灯的英文全称为High Intensity Discharge,缩写为 H.I.D,名称源自其发光原理即利用超高压电刺激氙气(XENON)气体与稀有金属汞化学发生化学反应。H.I.D灯泡的灯管内有一颗小小的玻璃球,其 中填充氙气气体及少许稀有金属汞,当电流和超高电压作用下,氙气与金属汞产生激烈的化学反应,释放接近正午日光的光芒,是传统车用卤素钨丝灯5倍亮度。ajJ传统车用卤素钨丝车灯用12伏特的电压启动发光,但来用来刺激氙气气体发光,是绝对不够的。真正全套的HID气体放电灯(如下图),需要有一颗电压安定 器(Ballast),将车载12V电压升压至23000V,瞬间爆发的超高压才可刺激氙气达到超高亮度,再2秒钟后,电压回落至85V,稳定持续供应氙 气灯泡发光。
氙气灯的最大特点是什么?
氙气是惰性气体中原子序数较大的元素(也就是较重的元素),原子半径较大。在弧光放电中,电子与气体发生弹性碰撞损失的能量同气体的原子量成反比,所以与其 他惰性气体相比氙气弧光放电时损失较小,发光效率高。同时,氙气的电离电势较低,放电时电极附近的电压降小,这样可以延长电极的寿命。又由于氙原子结构的 特点,长弧氙灯发出的光谱和日光非常接近,这是氙灯的最大特点。
HID 与卤素灯比较卤素灯与普通灯泡一样有灯丝,而氙灯则是没有灯丝,这是氙灯与传统灯具最重要的区别。氙灯是利用两电极之间放电器产生的电弧来发光的,如同电焊中产生的电弧的亮光。
氙气灯的色温与太阳光相似,但含较多的绿色与蓝色成份,因此呈现蓝白色光。这种蓝白色光大幅提高了道路标志和指示牌的亮度。
氙灯发射的光通量是卤素灯的 2倍以上,同时电能转化为光能的效率也比卤素灯提高 70%以上,所以氙灯具有比较高的能量密度和光照强度,而运行电流仅为卤素灯的一半。车灯亮度的提高也有效扩大了车前方的视觉范围,从而营造出更为安全的驾驶条件。
氙灯的变压器和电子控制单元控制电弧的放电过程,保证了光亮的稳定性及连续性。由于氙灯没有灯丝,因此就不会产生因灯丝断而报废的问题,使用寿命比卤素灯 长得多,据介绍氙灯使用寿命相当于汽车平均使用周期内的全部运行时间。更重要的一点是,氙灯一旦发生故障不会瞬间熄灭,而是通过逐渐变暗的方式熄灭,使驾 车者能在黑夜行车中赢得时间,紧急靠边停车。
氙灯还有一个好处,在安装正确的情况下不会产生多余的眩光,不会对迎面来车的驾驶者造成干扰。
采用氙灯增加了汽车前灯总成形状设计的自由度,换句话说就是提高了对汽车前照面设计的任意性。通过研制结构紧凑的前大灯总成,进一步提高了汽车的空气动力 学性能。目前,为了减少成本简化结构,一些轿车的四灯制前照灯采用氙灯与卤素灯混用方式,远光系统用卤素灯,近光系统用氙气灯,充分发挥各自的性能。HID 的色温越高越好吗?
一般人有一种错误观念,认为 K值越高就一定比较亮;其实,所谓的色温只是在解释何种温度下所产生的光色,温度越低,色温会偏红,反之则偏蓝,而在 4000K左右的光色正好是最白略微开始转蓝的色温,也最接近正午日光的颜色,人眼的接受度及舒适度最高。如何选择氙气灯?
选择车灯安全最重要,汽车照明设备不光是车主自己的事情,而且关系到公路夜间的行使环境、秩序,甚至影响到其他车辆和行人的安全。目前氙气灯按色温分有 多种型号: 4350 K、 6000 K、 7000K , 8000 K以及 12000 K。由于 8000 K以上的灯光太白太亮,穿透力较弱,因此在美国、欧洲、日本等国都禁止使用 8000 K以上的车灯,怕给行人和其他车辆带来危险。车水马龙汽车改装服务有限公司建议顾客装 7000 K的氙气灯,因为这种灯的色温无论在雨天或是大雾环境下都具有很强的穿透力。同时由于自身光线的亮度,可以大大缓和驾驶员感受到对方前大车灯照射过来的耀 眼眩光。此外,由于氙气灯比较光亮,装远光灯对行人、对会车都会造成危险,因此建议装灯时最好只装近光灯。同时消费者最好选择正规的,专业性强以及经验丰 富的汽车用品店安装,以得到有保障的服务。
如何判断灯泡的性能?
A.光通量高ZR光通量高可以简单地理解为光的实际输出量大。制造商通过对灯丝以及填充材料进行处理将光通量提高,增加了车灯的亮度,如注入更多的氙气和采用灯丝的抗震设计等。"M_B.合适的色温<`h人类眼睛能够接受的色温在2300K?7500K左右,而在实际使用中合适的色温则在3200K?5000K,这样车灯的亮度和穿透力对于照明是很合适的,当色温在3000K以下时,灯光呈现黄色,而当达到6000K时,就能呈现太阳光一般的偏白效果。C.使用寿命37BI!需要说明的是,车灯的使用寿命截止在车灯灯光衰退之前,即平均光效低于初始的75%时,灯泡就应该更换了。VY纵上所述,光通量、色温、使用寿命这三个因素构成了车灯质量的基础,其中最重要的是灯光的实际功率,就决定了车灯的实际效果。从技术上来说,这几个因素是相互制约的,因如果哪一个厂家声称其产品能够做到面面俱到,其真实性就值得怀疑了。在安装 hid 时应该注意些什么 ? 由于 hid 会产生高达 23000 伏特的电压 , 业者并不是建议消费者自行 DIY 安装 , 最好指明广告上列出的安装地点或经销厂家购买及安装 hid. 实际上在安装此系统是 , 不可将 hid 系统接上任何电源 , 安装者必须注意所有高压警告 ,hid 系统会产生强烈之白光 , 千万不要直视光源 。
6000K和8000K的哪个穿透力更强?
通常人们有一种误解,色温度越高,亮度越高。其实亮度的单位是流明度 (m),4300K是白色带一点黄色;5000K接近自然光;6000K白色略带一点蓝;8000K是偏蓝;10000K是蓝色;12000已经呈出青 色。而我们知道,色温越高,光的流明度越低,其对雾、雨的穿透力越差。所以说6000K的比8000K的穿透力要强。
如何判定镇流器?
第一、按国际标准,点亮1秒达到20%的,4秒内达到80%以上亮度就是好镇流器,而那种瞬间达到80%亮度的或者4秒钟达不到标准亮度的镇流器品质较差
纳米陶瓷电极HID灯技术
纳米陶瓷电极HID灯是一种通过永久性的陶瓷材料制成的电极产生电弧发光的电光源专利产品。江苏省科技情报站查新结果证明:纳米陶瓷电极HID灯技术,改变了传统HID灯的技术原理、材质和构造。大幅度地提高了灯的使用寿命,国际尚无先例。w7D'_Bh纳米陶瓷电极HID灯技术,使灯的使用寿命超过了三万小时,成功地解决了传统HID使用寿命短、显色性差等问题,是HID灯的换代产品。用纳米陶瓷电极制造HID灯取代原金属电极HID灯用于照明,在节电36%的情况下寿命延长3倍,显色性提高了56%。[M8UxtV纳 米陶瓷电极HID灯的高光效、低耗能、长寿命,可调光的独特性能,符合绿色照明理念。使用260W的纳米陶瓷电极HID灯管取代金属电极400W的HID 灯,已经具有实际应用,并具有前所未有的灿烂前景。著名经济学家指出:纳米陶瓷电极技术产品,是二十一世纪最赚钱的项目;纳米陶瓷电极HID灯,人类科学 技术的骄傲!lYwHIy纳米陶瓷电极项目投资80万元起,达产后年利润逐渐超过百亿元,解决劳动就业数万人。必须指出,纳米陶瓷电极HID灯的制造成本与普通HID灯的制造成本几乎相同,这更说明了这项技术的新颖性、实用性和创造性。
glove box
Manufacturer of oxygen and moisture controlled glove box systems for pharmaceutical, chemical packaging,...
Purity
< 1 ppm Oxygen (1 cm? Oxygen in 1 m? box volume)< 1 ppm moisture (1 ?l water vapor in 1 m? box volume)Additional Information:In free air the concentration of Oxygen is 209000 ppm.In free air the concentration of w...
真空镀膜技术
真空镀膜技术是一种新颖的材料合成与加工的新技术,是表面工程技术领域的重要组成部分。真空镀膜技术是利用物理、化学手段将固体表面涂覆一层特殊性能的镀膜,从而使固体表面具有耐磨损、耐高温、耐腐蚀、抗氧化、防辐射、导电、导 磁、绝缘和装饰等许多优于固体材料本身的优越性能,达到提高产品质量、延长产品寿命、节约能源和获得显著技术经济效益的作用。因此真空镀膜技术被誉为最具发展前途的重要技术之一 ,并已在高技术产业化的发展中展现出诱人的市场前景。这种新兴的真空镀膜技术已在国民经济各个领域得到应用,如航空、航天、电子、信息、机械、石油、化工、环保、军事等领域。
超高真空技术在表面处理系统中的应用
超高真空技术在表面处理系统中的应用林 主税(株式会社ULVAC. 日本)
摘 要 : 超高真空的获得与测量技术于 1950 年左右在加拿大和美国问世。今天,伴随着半导体设备、磁和光磁存储器设备等制造业的发展,每隔一个月就要求退出新型有效的生产体系。在这些表面设备的生产系统中,许多都要求局部超高真空或要求整个工艺处理过程置于超高真空环境中。设计一个优质、高效的超高真空系统及操作工艺是达到理想效果的关键。在这里,我们只有科学理解气体分子和特殊表面物化结构间的相互作用,才能很好地解决各种工程问题。具备了关于等离子体和超高真空室壁及内部装置的表面间的相互作用的经验,就可以很好的解决等离子体的控制问题。近年来,显示器件使用的某些有机材料的开发应用,给超高真空技术提出了新的挑战。消费产品的大批量生产推动和改进了高效超高系统的设计。
关键词:真空工程;沉积技术;介质膜层;表面工程
中图分类号:TB79;TB43 文献标识码:A 文章编号:1002-0322(2004)04-001-14
1 前言从实际或者理论上来说,最简单的表面处理超高真空系统是1968年由贝尔实验室的A.Y.CHO和J.R.Arthur发明的分子束外延(MBE)设备,并且由物理电子公司的Arthur etal进一步发展完善(图1)。在超高真空亚稳态热环境中,原子或分子的运动规律可以通过建立气体动力学模型来计算。为了进一步研究的需要,基底表面须达到原子级清洁,以获得高质量的样品。20世纪七十年代,IBM公司的Leo Esaki通过使用多源分子束外延系统,最先研制出多层薄膜的电子设备。为获得所需精度,改进了计算机过程控制技术。对于今天的电子、光子、光电子和磁电子设备制造来说,多层膜结构的形成仍采用传统工艺,每层薄膜的厚度可在1 nm到100 nm之间。磁随机存储目前正处于研发中,使用物理气相沉积法制备多层金属薄膜(图2),而超高真空环境有利于制备金属薄膜。在超高真空系统中钽层的形成显然是一个关键过程(图3)。Tohoku大学ERATO实验室(1981~1986)的J. NISHIZAWA利用游离于基底表面的热气体合成出了完美的分层Ga?As?Ga?As晶体表面,气体组分为((CH3)3Ga)和(AsH3)或((C2H5)3Ga)和(AsH3)。实验室将此技术转让给某工业公司,此公司开发了发光二极管(LED)产品,应用于现在随处可见的红绿灯上。90年代后期,该公司还开发了蓝色光二极管(OaN)。由于发光二极管系列的节约能源等各方面优势,它们已经普遍取代了普通灯泡。通过化学气相逐层沉积得到的单层膜,现在已被广泛应用到半导体工业的原子层沉积(ALD)技术上。从理论上来说,化学气相沉积可应用于大面积基片上,此基片应充分均匀,并且三维微结构表面缺陷很少。反应时,充入适当比例的混合蒸气,使游离气体发生化学反应,在表面形成单层沉积膜。蒸气的注入和抽气过程的控制应该十分迅速精确,以避免任何途径的污染:对于单层膜形成(CVD?ALD)过程,编程控制的短时间间隔单元处理应该可重复操作。
超硬材料薄膜涂层研究进展及应用
超硬材料薄膜涂层研究进展及应用
吕反修(北京科技大学,北京100083)
摘要:CVD和PVD TiN,TiC,TiCN,TiAlN等硬质薄膜涂层材料已经在工具、模具、装饰等行业得到日益广泛的应用,但仍然不能满足许多难加工材料,如高硅铝合金,各种有色金属及其合金,工程塑料,非金属材料,陶瓷,复合材料(特别是金属基和陶瓷基复合材料)等加工要求。正是这种客观需求导致了诸如金刚石膜、立方氮化硼(c-BN)和碳氮膜(CNx)以及纳米复合膜等新型超硬薄膜材料的研究进展。本文对这些超硬材料薄膜的研究现状及工业化应用前景进行了简要的介绍和评述。
关键词:超硬材料薄膜;研究进展;工业化应用 中图分类号:TIM3 文献标识码:A 文章编号:1008-1690(2004)04-0001-006
1 超硬薄膜
超硬薄膜是指维氏硬度在40GPa以上的硬质薄膜。不久以前还只有金刚石膜和立方氮化硼(c-BN)薄膜能够达到这个标准,前者的硬度为50-100GPa(与晶体取向有关),后者的硬度为50~80GPa。类金刚石膜(DLC)的硬度范围视制备方法和工艺不同可在10GPa~60GPa的宽广范围内变动。因此一些硬度很高的类金刚石膜(如采用真空磁过滤电弧离子镀技术制备的类金刚石膜(也叫Ta:C))也可归人超硬薄膜行列。近年来出现的碳氮膜(CNx)虽然没有像Cohen等预测的晶态β-C3N4那样超过金刚石的硬度,但已有的研究结果表明其硬度可达10GPa~50GPa,因此也归人超硬薄膜一类。上述几种超硬薄膜材料具有一个相同的特征,他们的禁带宽度都很大,都具有优秀的半导体性质,因此也叫做宽禁带半导体薄膜。SiC和GaN薄膜也是优秀的宽禁带半导体材料,但它们的硬度都低于40GPa,因此不属于超硬薄膜。 最近出现的一类超硬薄膜材料与上述宽禁带半导体薄膜完全不同,他们是由纳米厚度的普通的硬质薄膜组成的多层膜材料。尽管每一层薄膜的硬度都没有达到超硬的标准,但由它们组成的纳米复合多层膜却显示了超硬的特性。此外,由纳米晶粒复合的TiN/SiNx薄膜的硬度竟然高达105GPa,创纪录地达到了金刚石的硬度。 本文将就上述几种超硬薄膜材料一一进行简略介绍,并对其工业化应用前景进行评述。
能够发光折叠的显示器
有机发光显示技术是利用某种施加电压就能够自行发光的有机化合物进行显示的技术。这种技术的像素自身能够发光,不需要像液晶显示那样必须从背面透过光才能显示,其显示板能够做得更薄、更轻,甚至还可以缝制在服装上,成为人体上的流动显示器。有机发光显示器可以在零下40摄氏度到85摄氏度的环境中使用。日立显示器公司最近公开了该公司研制的能够显示26万色的3.5英寸有机发光显示器,并计划在明年投入使用。该有机发光显示器采用特殊的多层发光材料,显示画面亮度的对比度为1∶1000,相当于普通液晶显示器的10倍。而其生产成本只有液晶显示的1/3。日本先锋公司还开发出了采用树脂薄膜做基板的彩色显示器。这种电影胶片形的显示器可以弯曲和折叠,而且十分省电,一个9伏的碱性干电池就可以使用40分钟。
柔性有机发光二极管让显示屏收卷自如
加拿大蒙特利尔大学开发出制作柔性有机发光二极管(organiclightemittingdiodes,简称OLED)的工艺方法,使制造出具有柔性收卷自如的电视和计算机显示屏幕成为可能。该技术还可用于生产发光服装。相关研究文章发表在《应用物理通讯》5月刊网络版。 有机发光二极管是一种应用在电子产品显示屏上的新技术,其特点有:能在户外阳光下清楚显示、耗电量低、亮度高等。它远优于目前手机、数码相机和电视机等所采用的液晶显示(LCD)技术。由于作为透明电极的铟锡氧化层的易碎性,柔性有机发光二极管的制作方法以前进展缓慢。 蒙特利尔大学化学系教授理查德?马特尔介绍说,他们在研究中使用了一种具高导电性和柔韧性的碳纳米管结构,并运用类似于造纸的工艺将碳纳米管做成厚度在几十纳米的薄片。这些薄片具有碳纳米管的传导性和柔韧性,并且非常薄,从而具有极高的透明性。研究人员使用自己开发的工艺方法,利用这种新的薄片电极材料成功制作出一种高性能的柔性有机发光二极管。 蒙特利尔大学附属埃科勒工学院的研究人员卡拉?阿圭尔说,除了柔韧性外,这种碳纳米管还展现出许多吸引人的特性,使其成为显示和发光透明传导氧化物的选择之一。将来如对其进行适当的化学处理,从原理上讲,可用其替代金属电极,制作出两边都可发光的有机发光二极管。
荧光灯圆排车注汞工艺及其装置
荧光灯圆排车注汞工艺及其装置
摘要: 本发明公开了一种用于荧光灯生产过程中圆排车注汞新工艺及其所需装置。在向灯管12注汞前,将排气管11装好,把定量汞滴6放入汞滴架上,关闭真空开关20、拧紧上锁母3,使动盘充气孔15与定盘充气孔18相通。
开启真空泵对排气头7内腔、排气管11及灯管12抽真空,当真空度达到要求后, 使动盘充气孔15与定盘充气孔18相闭,开启真空开关20并对磁铁4通电,吸磁铁片5动作。定量汞滴6与从气体通管13来的惰性气体(如氩气、氪气等)一 同进入排气管11后,再进入灯管12内,实现对灯管12注汞的目的。这种注汞工艺及其装置适用于大、小口径排气管的注汞。由于有惰性气体携带,定量汞能全部进入灯管12内,无废品,无环境污染,有推广价值。
金卤灯液态注汞器
我单位在生产研制金卤灯时注意到:汞注入量的精确度至关重要,直观上反映的是灯电压(管压)一致性差,其实更严重的是造成管壁负载相差甚远,从而呈现出颜 色(色温)一致性差,这是影响金卤灯质量的致命因素。注汞器也称水银枪是目前国外国内金卤灯行业实现超精确注汞的唯一工具,我单位与德国MAU.M公司合 作在中国独家代理该业务。计量等级分为:2.5-10ul,5-25ul,10-50ul,20-100ul,100-500ul,200-1000ul (微升),1-5ml,2-10ml(毫升)。精度〈0.5%。额定电压 12,24,220,380(V)额定功率 35-1000(W)
强度气体放电灯
产品介绍: KP-85型自动快排车是金属卤化物灯电弧管生产线的主要设备之一。它是根据金属卤化物灯电弧内管排气、充气清洗和定量充气的排气工艺特性,参照进口设备 改进和设计的!其主要性能参数如下:真空系统由:四个日本SMC高真空耐高温无泄漏阀门、高精度规管和国产机械真空泵成都国投南光2XZ-4B(可配德国 莱宝泵)组成。系统的连接采用不锈钢硬接头连接具有良好的气密性,漏率≤3×10-7Pa.L/S。系统经若干次疲劳实验,系统均经过严格的清洗和电抛光 处理保证了洁净。. 电气控制采用日本MITSUBISHI公司产的可编程序控制器作为自动控制器,其它主要电器采用欧姆龙等国际著名公司的产品。因此本设备的电气控制部分具 有体积小、精度高、响应速度快和高可靠性等特点。 充气量:0Toor-200Toor可调。 单班产量:450--500只,(每班8小时计)。 系统真空度可达到0.1Pa 380V/ 700W 由于Kr85气体的放射性我们充分的予以考虑,人性化的设计了废气排空程序,以保证操作人员的安全! 望新老客户垂询! 价格说明 面议 额定功率700(W) 额定电压380(V)
真空脱羟炉
主要用途:
用于金属卤化物灯电弧管经第一端压封后的真空脱羟处理。
主要技术参数
炉膛有效尺寸:320×320×500mm
最高炉温:1300℃
长期工作温度:1200~1250℃
温度均匀性:±5℃
控温精度:1℃
空载冷态极限真空度:6×10-4Pa
炉室工作真空度: 6×10-3Pa
压升率:≤0.67Pa/h
炉体外表温度:≤60℃
真空脱羟炉1
这东西其实并不难,加热温度在1500度左右(一般用钨笼或钽片),泵用分子泵机组,前级和 预抽用罗茨泵机组,配高真空检测设备(好一点用德国莱宝的),炉体容积可以定做。炉体密封用液压升举密封。技术要求肯定比碰撞加速器简单,是不??所以国 内好的真空设备厂家肯定能搞定的。
脱羟炉
脱羟炉主要是:极限真空度,抽速,容积,温升(加热体,反射体材料),配的泵不能有返油及真空检测仪的配置加热温度在1500度左右(一般用钨笼或钽片),泵用分子泵机组,前级和预抽用罗茨泵机组,配高真空检测设备(好一点用德国莱宝的),炉体容积可以定做。炉体密封用液压升举密封。极限炉温1350和1500的炉子加热体是一样的
汽车金卤灯电子镇流器
汽车金卤灯电子镇流器是优质高效节能的12VDC电高压气体放电金属卤化物灯电子镇流器,是最新高科技电子产品,避免了声振荡现象的出现,极大地提高了灯电压与灯电流的稳定性,大大的提高了灯炮的使用寿命。用途:适用于汽车金卤灯灯泡配套使用。操作:按图接好线,通电即可使用。特点:1、低价格,高可靠性。2、体积小,重量轻。3、效率高,工作温低。4、使用寿命长,不需维修。5、内藏滤波器,避免电磁干扰。6、操作简单,使用方便。7、不需另要电容和触发器。8、确保使用期壹年,在壹年内已坏换新,不能拆封.拆机。9、防震防水。总体性能:输入电压:12VDC 输出电压:符合灯泡输入电流:3------15ADA 输出电流:符合灯泡输出频率:<8khz>0.95 本机功率:符合灯泡 额定功率:符合灯泡 本机温升:<80℃>90 本机尺寸:94×47×37 绝缘电压:2000V 10分钟 环境温度:-30?50℃ 相对湿度:周围温度<85%,不结露防水效率:潜水正常工作72小时过关。电磁干扰:符合国标的要求 质量检测:符合国标的要求本机壳子:铝壳本色 线路板尺寸:65X40
汽车金卤灯
汽车金卤灯是12VDC,24VDC电源,是优秀的高效节能的高压气体放电金属卤化物灯,是国内与世界最新高科技产品,是车灯必要的发展绿色照明,它由金 属卤化物灯灯泡和金属卤化物灯电子镇流器各2只及插头插座组成。真正做到了使你爱车车灯免维修,免换泡,长寿命一次性。目前市场上销售的汽车金卤灯和汽车金卤灯电子镇流器(包括安定器)并不是真正的汽车金卤灯和汽车金卤灯电子镇流器。都是骗人的,为什么这么说呢?因为杭州 金晟电子电器开发厂是全国唯一一家生产汽车金卤灯和汽车金卤灯电子镇流器的企业。所以说市场上的汽车金卤灯和汽车金卤灯电子镇流器是冒名顶替或是假的。那 么市场上的“汽车金卤灯”叫做什么呢?叫做汽车氙气灯,因为汽车氙气灯使用寿命只有3000小时,而汽车金卤灯使用寿命大于9000小时。汽车金卤灯灯泡和汽车金卤灯电子镇流器祥情请进入www.etelux.com.cn查看生产汽车金卤灯是目前很好的一个项目,发展前景很好,利润很大。热烈欢迎投资合作和借贷汽车金卤灯特性:一:比氙气灯亮2-3倍,光度能力更强更聚光,光大幅增加夜间比行车安全。任何障碍,任何死角,如白昼一般尽揽在您的视线中。二:高效节能,大幅减轻爱车电力系统负担,省电就是省钱,功率分为35W.50W.70W.100W.150W.175W。三:超寿命长达9000小时以上,是汽车氙气灯数倍以上的寿命,远超过爱车夜间行驶总时数。更舒服的超白光,日光色温,光射里强,射程更远,不会产生眩光。即使在恶劣的道路条件下,能使驾驶员更能看清楚路况轻松驾驶。四:采用高科技将稀土金属卤化物灌入石英管内,制成的陶瓷金属卤化物灯,才通过袖珍电子镇流器点亮。五:较汽车氙气灯安全,不会产生暴烈和其它不良现象。特殊高科技安全开发设计,生产,让您使用更安全。六免维修,一次性使用比爱车。。。。。。七:色温:35W/3000K.50W/3200K.70W/3400K.150W/4200K.175W/4400K。八:光通量:35W/3400Lm.50w/5400Lm.70W/6400Lm.100W/6800Lm..150W/13000Lm.175W/14000Lm。
35瓦汽车金卤灯
技术内容简介:
生产轿车前大灯用 35 瓦金卤灯,替代传统的用钨丝作发光体的卤钨灯。
技术特点及应用领域:
寿命是传统的钨灯的 10 倍,照射距离是传统灯的 2 倍,功耗是传统灯的近 1/2 ,照射视野更宽,更安全舒适。主要用作轿车的前大灯。
技术所处阶段:
在设备投入到位情况下, 3~6 个月可出产品。
可达到的技术指标:
与国际水平相当。
应用前景及市场预测:
2001 年国际市场销售已达 2800 万支, 2005 年可达 4000 万支,每支售价 40 美元(目前),出产成本 150 元 RMB 以内。每灯净税利 100 元以上。
电光源专委会召开2002年全国金属卤化物灯研讨会
由中国照明学会电光源专业委员会和复旦大学电光源研究所共同举办的“2002年全国金卤灯研讨会”于2002年11月1日至11月4日在浙江海盐召开。 出席本次会议的注册代表共有243人,和合资部门的技术和管理人员,台湾企业、公司人员和专程而来的外国专家等。中国照明学会电光源专委会的顾问蔡祖泉教授等四人,朱绍龙教授、杨正名教授和胡德霞教授也出席了会议。 本次大会分别由电光源专委会主任吴初喻教授和复旦大学电光源研究所副所长诸定昌教授主持,共交流论文28篇;内容涉及金卤灯制灯工艺与质量分 析,金卤灯灯用材料(电极材料、发光材料、石英材料、消气剂),金卤灯专用设备和测试方法,以及金卤灯用节能电感镇流器,电子镇流器、触发器等几乎所有的 方方面面,是一次全面地反映了我国当前金卤灯技术水平的会议。 人大还邀请了德国布劳恩公司公司的德国专家专门介绍该公司的惰性气体工作箱以及配套的高温脱烃、二氧化硅除尘,电极定位,充排气与等离子体封接等设备,并为此专门组织了更深入细致的小组对口研讨会,引起了与会代表的极大兴趣。 国际铜业协会(北京)、佛山欧司朗、飞利浦(上海)照明公司和GE灯用材料公司也都派代表参加了会议。 会议期间,另有170名代表分别参加了大会专门设置的灯用材料、汽车金卤灯和陶瓷金卤灯、电子镇流器以及电感镇流器和触发器4个专题讨论会。 会议还研究了2003年工作计划,确定第三届全国电光源科技研讨会将在2003年十月北京召开,具体由学会电光源专业委员会与中照协电光源委 员会共同举办及北京电光源研究所承办。同时确定由中国照明学会电光源专委会委托复旦大学电光源研究所正式申办第11届国际电光源科技研讨会(2007 年)。为此将立即组成申办机构,同时要积极组团参加第10届国际电光源研讨会。
星期四, 十二月 21, 2006
Automotive headlamp
Abstract: An improved vehicle headlamp for developing forward illumination and having reduced dimensions relative to prior art headlamps is disclosed. The lamp comprises an enclosed concave parabolic reflector of a rectangular cross section type and having a single tungsten-halogen light source coaxially located within the enclosed reflector. The headlamp has a glare shield arranged around the light source when the headlamp is utilized for low beam application and a heat shield located about the light source for both low and high beam applications. The light source is of a tubular shape and has a bulbous portion preferably of an ellipsoidal shape. The efficacy of the light source is improved by means of an infrared reflective coating placed on its outer surface
What we claim as new and desire to secure by Letters Patent of the United States is: 1. An improved vehicle headlamp for providing forward illumination comprising: a reflector having a generally rectangular cross section, a parabolic central cavity with internal reflective surfaces and generally flat top and bottom sections which are substantially parallel to each other; a light-transmissive lens mated to and closing the front section of said reflector; receptacle means disposed at the rear of said reflector and having electrical members extending into said cavity; and a light source comprising an envelope having a centrally located bulbous portion with an ellipsoidal shape and an elongated straight-like tubular section at each of its opposite ends, said elongated sections having an outer diameter which is substantially less than the average diameter of said bulbous portion, said bulbous portion having positioned therein a filament and containing a halogen compound along with a fill-gas which is above atmospheric; said filament being connected between electrical means extending through and respectively sealed within said opposed elongated sections, one of said electrical means of said filament being connected to one of said electrical members of receptacle means and the other said electrical means of said filament having means for connecting to the other of said electrical members of said receptacle means; said light source being connected to and arranged by support means so that the midsection of its filament is coaxially aligned within said reflector and one of its opposed sealed elongated sections is positioned toward and near the rear of said reflector. 2. An improved vehicle headlamp according to claim 1 wherein said reflector is of a material selected from the group consisting of plastic and glass. 3. An improved vehicle headlamp according to claim 2 wherein said reflector and said lens are formed of glass. 4. An improved vehicle headlamp according to claim 2 wherein said reflector and said lens are formed of plastic. 5. An improved vehicle headlamp according to claim 1 wherein the rectangular headlamp has frontal physical dimensions of about 60 mm in height and about 135 mm in width. 6. An improved vehicle headlamp according to claim 1 wherein said envelope of said light source has a reflective coating covering its outer surfaces. 7. An improved vehicle headlamp according to claim 6 wherein said coating is selected so as to reflect the infrared portion of the electromagnetic spectrum. 8. An improved vehicle headlamp according to claim 1 wherein said light source is comprised of quartz. 9. An improved vehicle headlamp according to claim 1 wherein said filament has parameters effective for operation with a voltage of about 12.8 volts and at a wattage rating in the range from about 35 watts to about 70 watts. 10. An improved vehicle headlamp according to claim 1 wherein said filament has its midsection predeterminately disposed with respect to the focal point of said reflector and along the optical axis of said reflector. 11. An improved vehicle headlamp according to claim 10 further comprising a glare shield connected to said support means and positioned about a portion of the bulbous portion of the light source which is toward the front section of the reflector. 12. An improved vehicle headlamp according to claim 11 further comprising a heat shield located above the light source.
Description:
BACKGROUND OF THE INVENTION This invention relates to an improved vehicle headlamp comprising a concave parabolic enclosed reflector having internal reflective surfaces and a single filament light source of a tubular shape which cooperates with the reflector to develop forward illumination that is substantially devoid of uncontrolled light. The present invention is primarily related to motor vehicle headlamps utilized to accommodate the aerodynamic styling of automobiles. In certain types of related headlamps, the geometry, such as the slope angle, is altered or reduced, relative to typical seal-beam headlamps, so that hood lines of the vehicle may be modified allowing contouring of the front end of the vehicle in order to reduce aerodynamically induced drag. Such headlamps are rectangular in shape and may incorporate relatively complex geometric parameters into the reflector and or lens of the headlamp for improving the optical performance of the headlamp which allows for modification of the styling of the vehicle while at the same time providing the frontward illumination needs of the vehicle. This improved reflector-lens combination is relatively expensive and as such becomes an integral part of the vehicle with its tungsten-halogen light source being of a replaceable type. While this rectangular automotive headlamp serves its desired function, it does present certain disadvantages primarily related to the cost of replacement. If such a headlamp, in particular the reflector or lens, becomes damaged because of a stone impact or by a related automotive collision, the owner of the automobile must, in certain cases, seek replacement from the automotive dealer of the particular brand of related automobiles rather than have the less expensive option of obtaining a replacement from retail outlets. In order to avoid such costly replacement cost, it is desired that a one-piece replaceable sealed beam headlamp be provided which satisfies the need for aerodynamic styling of automobiles. The presently available conventional one-piece sealed beam rectangular headlamps, lacking in the geometry adaptable to allow contouring of the front end of the vehicle, and which comprise non-replaceable tungsten-halogen light sources have practical limits with regards to their frontal physical dimensions in order to provide at least the minimum frontward illumination requirements for the automobile. The limited dimensions relative to the frontal area of an automobile of currently available rectangular sealed beam headlamps which satisfy federal highway standards are 92 mm (height) by 150 mm (width). The dimension of the reflector and tungsten-halogen light source of these conventional headlamps are interrelated in that in order to provide the required illumination for the automobile, the light emitted by the light source must be efficiently intercepted and reflected by the reflector. The optical parameters (shape and geometric dimensions) of the reflector must be selected in accordance with the parameters of the light source (size and lumen output) so as to provide a beam pattern from the headlamp that is of a sufficient amount of directed light while at the same time limiting the amount of uncontrolled light. Additional practical reductions in the physical dimensions of the existing rectangular headlamp are primarily limited by the geometry of the filament, the bulb size and the material of the tungsten-halogen light source. Current rectangular headlamps commonly utilize a tungsten-halogen light source that comprises a single-ended cylindrical envelope comprised of a glass material and lodging one or two filaments along with containing a halogen compound. The diameter, typically in the range of 10 to 15 mm, of the glass envelope must be of a selected and sufficient value so that during its operation it provides the desired housing to allow for the proper chemical reaction of its confined halogen compound, but at the same time to limit the operating temperature below the failure point of the glass envelope. If the operating temperature of the glass envelope is exceeded, the envelope will be damaged and thereby rendering the automotive headlamp inoperative. It is desired that the dimensions of the light source be reduced so that the dimensions of the conventional sealed beam rectangular headlamp may also be reduced. It is further desired that the characteristics of the envelope of the tungsten-halogen light source be improved so as to yield further reductions in the dimension of the reflector. Further, it is desired that the optical characteristics of the light source be improved so as to enhance the optical performance of the rectangular headlamp. Still further, it is desired that the efficacy or lumens/watt of the light source be improved so as to correspondingly improve the efficacy of the headlamp. It is desired that all of the improvements be accomplished so that the yielded rectangular headlamp having reduced physical dimensions and reduced power requirements provides the frontward illumination needs of the automobile. Accordingly, it is an object of the present invention to provide a rectangular vehicle headlamp having reduced physical dimensions primarily yielded by a tungsten-halogen light source having reduced dimensions. It is another object of the present invention to provide a tungsten-halogen light source having improved optical and operational characteristics along with reduced power requirements that contribute to enhancing the optical and operational characteristics of the rectangular headlamp. SUMMARY OF THE INVENTION The present invention is directed to a vehicle headlamp comprised of a tungsten-halogen light source having physical and operational parameters that allow for a reduction of the frontal physical dimensions of a reflector, preferably of a rectangular shape, with which the light source cooperates to develop forward illumination substantially devoid of uncontrolled light. The improved headlamp comprises a concave parabolic enclosed reflector having internal reflective surfaces and a single filament light source located and coaxially aligned within the enclosed reflector by means of support members. The light source is of a double-ended type and is comprised of an envelope having a centrally located bulbous portion and an elongated tubular section at each of its opposite ends. The bulbous portion has positioned therein a single filament and contains a halogen compound along with a fill-gas which is above atmospheric. The bulbous portion may be of elliptical shape to improve the optical performance of the light source along with that of the headlamp. Further the light source may have an infrared (IR) reflective coating covering its outer surface which increases the efficacy of the light source along with that of the headlamp. The light source allows for the reduction of the frontal physical dimensions of the headlamp relative to prior art headlamps by a factor of about 40%. BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a front perspective view partially cut-away of a reflector housing a light source in accordance with the present invention; FIG. 2 is an illustration of the light source of the present invention; FIGS. 3(a) and 3(b) are schematic views comparatively and respectively illustrating a portion of the light control of a single-ended prior art light source and the improved light control of the double-ended light source of the present invention yielded by a preferably shaped elliptical bulbous portion. FIGS. 4(a) and 4(b) are schematic views comparatively and respectively illustrating a portion of the light control of the cylindrical single-ended prior art light source and the improved light control of the double-ended light source of the present invention yielded by having reduced pinch regions relative to the prior art devices. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a front perspective, partially cut-away, view of the improved vehicle headlamp 10 of the present invention. The lamp 10 has a reflector 12 which is generally rectangular in cross section and has a central parabolic cavity with generally flat top and bottom sections which are substantially parallel to each other. The reflector has a front or face portion 12.sub.A and a back or rear portion 12.sub.B. The reflector is enclosed by a light-transmissive mated, and preferably sealed to lens (not shown) its front portion 12.sub.A. The reflector may be comprised of material selected from the group consisting of plastic and glass. The headlamp of such a reflector comprised of plastic or glass is preferably a two-piece member with one of the member being the lens formed of the same material as the reflector and sealed or joined to the front portion of the reflector. If desired, the reflector and lens of the headlamp may both be of a plastic material so as to be similar to plastic headlamp disclosed in U.S. Pat. No. 4,210,841 of Vodicka et al. issued July 1, l980, having a heat shield located above the light source and which is herein incorporated by reference. The lamp 10 further comprises a double-ended light source 14 having a single filament 16 with its midsection 18 located and coaxially aligned within the enclosed reflector 12. For the embodiment shown in FIG. 1, the alignment of the light source is accomplished by support means comprising support and electrical members 20, 22 and 24. The member 20 has one end connected to the inlead of the filament of the light source 14 and its other end connected to member 22 located within and positioned at the rear 12.sub.B central portion of the reflector 12. The other inlead of the filament of the light source 14 is connected to member 24, similar to member 22, and positioned at the rear 12.sub.B central portion of the reflector. The members 22 and 24 extend through a sealed or potted region 26 and are electrically connected to an receptacle means 28 (not fully shown) which supplies the required excitation for headlamp in accordance with the needs of the automobile in which the lamp 10 is housed. The lamp 10 serves as either the high or low beam illumination source for the automobile. For low beam applications, it is preferred that a glare light shield 30 connected to support member 20 by appropriate means be positioned and arranged about the bulbous portion of the light source 14 facing the front of the reflector. The glare light shield 30 substantially prevents the light emitted by the filament which does not encounter any parabolic portions of the reflector from otherwise escaping through the lens in an uncontrolled manner. The glare shield is a thin metal member which substantially eliminates the direct filament images from being transmitted by the headlamp 10. The glare light shield 30 may be such as that disclosed in U.S. Pat. No. 4,029,985 of Rachel issued June 14, 1977 and which is herein incorporated by reference. Further, for low beam or high beam application, the midsection 18 of the filament is predeterminately disposed with respect to the focal point of the reflector. For high beam applications, the glare shield is not necessary, but the previously mentioned heat shield of U.S. Pat. No. 4,210,841 is desired for diffusing the convected heat within the headlamps so as to reduce the hot spots related to the adhesives of the headlamps. Further details of the light source 14 are shown in FIG. 2. The light source 14, shown in a slightly enlarged manner, is a double-ended type and has inleads 32 and 34 (connected to members 20 and 24 of FIG. 1) located at respectively sealed opposite ends of light source 14 and respectively connected to electrical means such as foil members 36 and 38. The other ends of the foil members 36 and 38 are connected by appropriate means to opposite ends of the filament 16. The filament 16 has parameters, such as wire diameters and coil windings, selected so as to be effective for operation with a voltage of about 12.8 and provide an operating wattage in the range of about 35 to about 70 watts. The light source 14 has a bulbous portion 14.sub.A having positioned therein the filament 16 and containing a halogen compound along with a fill-gas which is above atmospheric. The envelope of the light source 14 is preferably comprised of a quartz material which allows for an increased operating wall temperature relative to a typical light source comprised of glass. The quartz light source 14 is operated with increased wall temperature and increased internal pressure both contributing to improving the efficacy or lumens/watt relative to prior art light sources formed of glass. The quartz, tubular light source 14 has decreased bulb size and length, relative to prior art glass light sources, which yield the optical benefits to be more fully disclosed hereinafter. The tubular light source may have a reflective coating covering its outer surface. The characteristics of reflective coating are preferably selected so as to intercept and reflect the infrared portion of the electromagnetic spectrum of the light emitted by the filament 16 back toward the filament. This reflected infrared energy increases the operating temperature of the filament without providing any increases in the excitation supplied by the automobile to the filament. The increased operating temperature of the filament correspondingly increases the efficacy of the light source which also thereby improves the performance of the headlamp 10. This improved performance of lamp 10 allows for reduction in the electrical capabilities such as the amperage rating of the electrical system of the automobile. The reduced power requirement for the headlamp 10 facilitates weight reductions of the automotive electrical system, which in turn yields improved fuel efficiency. The light source 14, shown in FIG. 2, comprises an envelope having the centrally located bulbous portion 14.sub.A and elongated straight-like tubular sealed sections 14.sub.B at each of its ends. The elongated sealed sections have an outer diameter which is substantially less than the average diameter of bulbous portion. The envelope of the light source 14 has typical dimensions of the bulbous portion 14.sub.A with a outer diameter of about 6 mm to about 10 mm, the sealed sections 14.sub.B at each of its ends having a thickness of about 3 mm to about 6 mm and a length 14.sub.C of about 8 mm to about 14 mm, and an overall length 14.sub.D of about 25 mm to about 45 mm. The bulbous portion 14.sub.A is preferably of an elliptical shape. The dimensions of the double-ended light source 14 along with the elliptical shaped bulbous portion 14.sub.A are of importance to the present invention and may be more fully appreciated by first referring to prior art light sources such as those disclosed in the "BACKGROUND" section. Prior art light-sources of the tungsten-halogen type have a cylindrical inner envelope formed of a glass material with an outer diameter of about 10 mm to about 15 mm, and are the commonly known as single-ended devices. Single-ended light sources have a pinch area at one of its ends with a typical length of about 5 mm to about 10 mm and a typical thickness of about 4 mm to about 6 mm. Some of the benefits related to the present invention of the double-ended light source having an elliptical shaped bulbous portion 14.sub.A relative to single-ended light source may now be described with reference to FIGS. 3(a) and 3(b). FIGS. 3(a) and 3(b) are schematics used to illustrate a comparison between the cylindrical single-ended prior art light source 114 (FIG. 3(a)) and the tubular light source 14 (FIG. 3(b)) having an elliptical shape bulbous portion 14.sub.A. The single-ended light source 114 is shown in FIG. 3(a) without any filament support and electrical members and is located relative to its related reflector 112 of its headlamp. Similarly, the double-ended tubular light source 14 is shown in FIG. 3(b) without its filament members and is located relative to its related reflector 12 of its headlamp 10. The tubular light source 14 has the midsection 18 of its filament 16 predeterminately and coaxially disposed relative to the focal point and along the optical axis 40 of the reflector 12. Similarly, the single-ended light source 114 has the midsection ll8 of its filament 116 predeterminately and coaxially disposed relative to the focal point and along the optical axis 140 of its reflector 112. The tubular light source 14 having a preferably shaped elliptical bulbous portion 14.sub.A reduces the secondary reflections related to the filament relative to the single-ended light source 114 and such reduction may be described with reference to FIG. 3(a). The filament 116 emits a primary light rays representatively shown as light ray 142 which is substantially transmitted out of the light source 114, encounters and is advantageously reflected by the parabolically shaped reflector 112. The parabolically shaped reflector causes the light ray 142 to be reflected at the same angle at which it arrives and therefore light ray 140 is reflected essentially parallel to the optical axis 140 and into the directed or desired light beam of the headlamp. A portion of the primary light ray 142, approximately 8% to 10%, that encounters the cylindrical walls of the light source 114 is disadvantageously reflected by light source 114 away from its prescribed path and is shown in phantom as a secondary reflection 144. The secondary reflection 144 emanate from the light source 114 in such a direction as not to pass through or near the area occupied by the filament 116 and result in a commonly termed "secondary filament image" (off focus) reflection. The secondary reflection 144 is diverted and distorted from its prescribed path by light source 114 downward at an undesirable angle toward reflector 112 which intercepts and reflects it at an undesired angle and in a non-parallel manner relative to the optical axis 140. The light ray 144 is transmitted from the headlamp as a uncontrolled light ray 144. This uncontrolled light ray 144 typically represents approximately 8% to 10% of the light beam output. The secondary reflections related to light source 14 are substantially reduced or even eliminated by the elliptical bulbous portion 14.sub.A. The filament 16 is centrally positioned along the major axis of the substantially elliptical bulbous portion 14.sub.A and also occupies fully the distance between the foci of the elliptical bulbous portion. The filament 16 emits a primary light ray 42 which is transmitted out of the light source and advantageous reflected by reflector 12 essentially parallel to the optical axis 40 as directed light 42 in a manner similar to that described for primary ray 142 of light source 114. However, the secondary reflections 44, shown in phantom in FIG. 3(b), related to the primary ray 42 encountering the elliptical bulbous portion 14.sub.A are reflected back so as to pass through the area of the filament and are thus indistinguishable from light directly emanating from the filament. The secondary reflection 44 encounter the parabolically shaped reflector 12 which reflect light ray 44 essentially parallel to the optical axis 40 as directed light 44. The elliptical bulbous 14.sub.A in addition to improving the optical performance of light source 14 having reduced secondary reflection of a factor of approximately 8% to 10%, is also beneficial to the operation of the light source 14 having an infrared reflective coating. The benefits of an elliptical shaped inner envelope having an infrared coating on its outer surface are described in U.S. Pat. No. 4,535,269 of Tschetter et al. to which reference may be made for further details. Additional comparative benefits of double-ended light source 14 relative to single-ended light source 114 are concerned with the interreaction of the pinch region of each light source as related to the rear portion of their respective reflector. FIGS. 4(a) and 4(b), similar to FIGS. 3(a) and 3)b), are schematics used to illustrate a comparison of optical considerations between the light source 114 (FIG. 4(a)) having a pinch section 114.sub.B and the light source 14 (FIG. 4(b)) having the pinch section 14.sub.B. The tubular light source 14 has the pinch section 14.sub.B of one of its end located between the filament 16 and positioned toward and near the rear portion 12.sub.B of reflector 12. The cylindrical single-ended light source 114 has its pinch portion 114.sub.B located between the filament 116 and positioned toward and near the rear portion 112.sub.B. The desired operation related to light source 114 may be described with reference to light ray 146. The light ray 146 when emitted from the filament 116 does not encounter pinch section 114.sub.B and impinges the parabolically shaped reflector rear portion 112.sub.B, which in a manner as previously described for light ray 142, reflects light ray 146 as directed light. The undesired or disadvantage of light source 114 may be described with reference to light ray 148 which is emitted by the filament 116 but encounters the pinch section 114.sub.B of the light source 114. The pinch section 114.sub.B causes the light ray 148 to be diverted and distorted from its intended, prescribed path, downward at an undesirable angle toward the reflective surface 112.sub.B. The distorted light ray 148 impinges and is reflected by the reflective surface 112.sub.B in an undesired, non-parallel, manner relative to optical axis 140 as light ray l48 which forms part of the upwardly directed uncontrolled light 148 of the light beam transmitted by the prior art headlamp. All of the light rays emitted by the filament 116 that undesirably encounter the pinch portion 114.sub.B are shown as contained within a zone 150 which is formed in FIG. 4(a) by phantom lines drawn from the midsection 118 of the filament 116 to each edge of pinch region 114.sub.B and then terminating at the rear portion 112.sub.B. The light source 14 of FIG. 4(b) having the sealed portion 14.sub.B also produces a undesired zone of light 46 similar to zone of light 150; however, the dimensions of sealed section 14.sub.B are substantially less than those of sealed section 114.sub.B, and accordingly, the zone 46 of FIG. 4(b) is substantially less than zone 150 as shown in FIG. 4(a). The optical benefits yielded by the light source 14 having a reduced pinch section 14.sub.B relative to the prior art pinch section 114.sub.B may be described with the reference to light ray 48. Light ray 48 emitted by the filament 16, which would be within the confines of section 114 if present, is intercepted and reflected by the parabolically shaped reflective portion 12.sub.B into the directed light 48 of the lamp 10. The light ray 48 being in the directed beam pattern of lamp 10 is representative of the benefits yielded by the headlamp of the present invention over prior art headlamps. The section of the rear portion 12.sub.B related to the undesired zone 46 and the section of the rear portion 112.sub.B related to the undesired zone 150 develop uncontrolled, spread, fill or glare light that does not contribute to the desired, directed, main or beneficial portion of the light beam of the automobile headlamp. To compensate for this loss in beneficial reflective surfaces, the remainder of the headlamp is provided with sufficient reflective surfaces so that the reflector may be able to provide enough frontward illumination to meet the needs of the automobile. A comparison between light zone 150 (prior art) and 46 (lamp 10) reveals that the present invention lamp 10 has substantially less uncontrolled light producing reflective surfaces relative to prior art headlamps. The effect of this reduction of uncontrolled light producing surfaces is that the overall dimensions, especially the frontal dimensions, of the lamp IO of the present invention may be reduced relative to prior art headlamps while still developing frontward illumination that meets and even exceeds the needs of the automobile. In the practice of the present invention two headlamps, one employing a light source 14 having an elliptical bulbous portion along with an infrared (IR) reflecting coating, and the other having an elliptical bulbous portion but lacking an IR coating, were experimentally fabricated and tested in order to determine if these devices satisfied the automobile illumination requirements as specified in the federal vehicle safety standards. The tested fabricated headlamps exceeded the illumination needs of the automobile. Such fabricated headlamps was substantially rectangular in shape and had overall frontal dimensions of 60 mm (height) by 135 mm (width). The fabricated headlamps also had a depth of 83 mm. These headlamps provide a reduction in size of the frontal dimensions of about 40% relative to prior art rectangular headlamps discussed in the "Background" section having frontal dimensions of 92 mm (height) by 150 mm (width). It will now be appreciated that the practice of the present invention provides for a automobile headlamps having reduced physical dimensions primarily provided by the quartz, tubular light source 14 of the present invention coaxially aligned within the reflector and having reduced pinch sections relative to prior art cylindrical glass light sources. These improved automobile headlamps also provide reduced uncontrolled light relative to prior art headlamps. It will be further appreciated that the optical performance of the tubular light source 14 may be further enhanced by having an elliptical bulbous portion. Further the operational characteristics of the light source may be improved by providing an infrared (IR) reflective coating covering its outer surfaces which reflects unneeded infrared light emitted by the filament back toward the filament to increase the operating temperature of the filament and improve efficacy of the light source, and therefore the overall efficacy of the headlamp 10 of the present invention which also allows for a reduction in the power requirements of the automobile to yield improved fuel efficiency.
Vacuum Deposition Processes
In a vacuum, gas pressure is less than the ambient atmospheric pressure. A plasma is a gaseous environment where there are enough ions and electrons for there to be appreciable electrical conductivity. Vacuum deposition is the deposition of a film or coating in a vacuum (or low-pressure plasma) environment. Generally, the term is applied to processes that deposit atoms or molecules one at a time, such as in physical vapor deposition (PVD) or low-pressure chemical vapor deposition (LPCVD) processes. It can also be applied to other deposition processes such as low-pressure plasma spraying (LPPS).
The vacuum in deposition processing increases the "mean free path" for collisions of atoms and high-energy ions and helps reduce gaseous contamination to an acceptable level. When establishing a plasma in a vacuum, the gas pressure plays an important role in the enthalpy, the density of charged and uncharged particles and the energy distribution of particles in the plasma. A plasma in a "good vacuum" provides a source of ions and electrons that may be accelerated to high energies in an electric field.
In PVD processing, these high-energy ions can be used to sputter a surface as a source of deposition material and/or bombard a growing film to modify the film properties. Ion bombardment effects can also be found in LPCVD. The plasma may also be used to "activate" reactive gases and vapors in reactive deposition processes and fragment the chemical vapor precursors in plasma-enhanced chemical vapor deposition (PECVD).
PVD. Physical vapor deposition processes are atomistic where material vaporized from a solid or liquid source is transported as a vapor through a vacuum or low-pressure gaseous or plasma environment. When it contacts the part, it condenses.
The vaporized material may be an element, alloy or compound. Some PVD processes can be used to deposit films of compound materials (reactive deposition) by the reaction of depositing material with the gas in the deposition environment (e.g., TiN) or with a co-depositing material such as TiC or even a combination of the two.
Typically, PVD processes are used to deposit films with thicknesses in the range of a few nanometers to thousands of nanometers; however, they can be used to form multilayer coatings, thick deposits and free-standing structures.
Vacuum evaporation. Vacuum evaporation (including sublimation) is a PVD process where material from a thermal vaporization source reaches the substrate without collision with gas molecules in the space between the source and substrate. The trajectory of the vaporized material is "line-of-sight." Typically, vacuum evaporation takes place in a gas pressure range of 10-5 to 10-9 Torr, depending on the level of contamination that can be tolerated in the deposited film. For an appreciable deposition rate to be attained, the material vaporized must reach a temperature where its vapor pressure is 10 mTorr or higher. Typical vaporization sources are resistively heated stranded wires, boats or crucibles (for vaporization temperatures below 1,500C) or high-energy electron beams that are focused and rastered over the surface of the source material (any temperature). Figure 1 shows several vacuum evaporation source configurations.
Advantages of vacuum evaporation:
High-purity films can be deposited from high-purity source material.
Source of material to be vaporized may be a solid in any form and purity.
The line-of-sight trajectory and "limited-area sources" allow the use of masks to define areas of deposition on the substrate and shutters between the source and substrate to prevent deposition when not desired.
Deposition rate monitoring and control are relatively easy.
It is the least expensive of the PVD processes.
Disadvantages of vacuum evaporation:
Many compounds and alloy composi- tions can only be deposited with difficulty.
Line-of-sight and limited-area sources result in poor surface coverage on complex surfaces unless there is proper fixturing and movement.
Line-of-sight trajectories and limited-area sources result in poor film-thickness uniformity over large areas without proper fixturing and movement.
Few processing variables are available for film property control.
Source material use may be low.
High radiant heat loads can exist in the deposition system.
Large-volume vacuum chambers are generally required to keep an appreciable distance between the hot source and the substrate.
Vacuum evaporation is used to form optical interference coatings using high and low index of refraction materials, mirror coatings, decorative coatings, permeation barrier films on flexible packaging materials, electrically conducting films and corrosion protective coatings. When depositing metals, vacuum evaporation is sometimes called vacuum metallization.
Sputter deposition. Sputter deposition is the deposition of particles vaporized from a surface (sputter target) by the physical sputtering process. Physical sputtering is a non-thermal vaporization process where surface atoms are physically ejected by momentum transfer from an energetic bombarding particle that is usually a gaseous ion accelerated from a plasma or an "ion gun." This PVD process is often called sputtering.
Sputter deposition can be performed in a vacuum or low-pressure gas (<5 mTorr) where the sputtered particles do not suffer gas-phase collisions in the space between the target and the substrate. It can also be done in a higher gas pressure (5-15 mTorr) where energetic particles that are sputtered or reflected from the sputtering target are "thermalized" by gas-phase collisions before they reach the substrate.
The most common sputtering sources are the planar magnetrons where the plasma is magnetically confined close to the target surface and ions are accelerated from the plasma to the target surface. In the unbalanced magnetron configuration, the magnetic field is configured to allow electrons to escape and form a plasma away from the target. The high sputtering rates attainable in magnetron sputtering allow reactive deposition of compound films as long as the sputtering target is not allowed to react with the reactive gas to form a low-sputtering rate compound (target poisoning). Figure 2 shows several sputter deposition configurations using planar magnetron sputtering sources.
Advantages of sputter deposition:
Elements, alloys and compounds can be sputtered and deposited.
The sputtering target provides a stable, long-lived vaporization source.
In some configurations, the sputtering source can be a defined shape such as a line or the surface of a rod or cylinder.
In some configurations, reactive deposition can be easily accomplished using reactive gaseous species that are activated in plasma.
There is very little radiant heat in the deposition process.
The source and substrate can be spaced close together.
The sputter deposition chamber can have a small volume.
Disadvantages of sputter deposition:
Sputtering rates are low compared to those that can be attained in thermal evaporation.
In many configurations, the deposition flux distribution is non-uniform, requiring moving fixturing to obtain films of uniform thickness.
Sputtering targets are often expensive and material use may be poor.
Most of the energy incident on the target becomes heat, which must be removed.
In some cases, gaseous contaminants are "activated" in the plasma, making film contamination more of a problem than in vacuum evaporation.
In reactive sputter deposition, the gas composition must be carefully controlled to prevent poisoning the sputtering target.
Sputter deposition is widely used to deposit thin film metallization on semi-conductor material, coatings on architectural glass, reflective coating on polymers, magnetic films for storage media, transparent electrically conductive films on glass and flexible webs, dry-film lubricants, wear resistant coating on tools and decorative coatings.
Arc Vapor Deposition. In arc vapor deposition, the vapor source is the vaporization of the anode or cathode of a low-voltage, high-current electric arc in a good vacuum or low-pressure gas. The usual configuration is the cathodic arc where the evaporization is from an arc that is moving over a solid cathodic surface.
In the anodic arc configuration, the arc is used to melt the source material that is contained in a crucible. The vaporized material is ionized as it passes through the arc plasma to form charged ions of the film material. In the arc vaporization process, molten globules (macros) can be formed and deposited on the substrate. To avoid this problem, a plasma duct may be used to bend the charged particles out of the line-of-sight of the source, and the macros will deposit on the walls of the duct. Figure 3 shows some arc vapor deposition configurations.
Advantages of arc vapor deposition:
All electrically conductive materials can be vaporized.
The arc plasma is effective in ionizing the vaporized material as well as reactive gases used in reactive deposition.
Ions of the film material can be accelerated to a high energy before being deposited.
There is little radiant heating (cathodic arc deposition).
Reactive gases are activated in the plasma to aid in reactive deposition processes.
Poisoning the cathodic surface during the reactive arc vapor deposition is much less of a problem than with reactive sputter deposition.
Disadvantages of arc vapor deposition:
Only electrically conductive materials can be vaporized.
There is high radiant heating (anodic arc).
Molten globules (macros) ejected from the electrode can be deposited in the film, giving nodules on the surface.
Ion plating. Ion plating uses concurrent or periodic energetic particle bombardment of the depositing film to modify and control the composition and properties of the deposited film and to improve surface coverage and adhesion. The depositing material may be vaporized by evaporation, sputtering, arc erosion or other vaporization source. It can be obtained also from the decomposition of a chemical-vapor precursor species.
The energetic particles used for bombardment are usually ions of an inert or reactive gas or ions of the depositing material (film ions). Ion plating can be done in a plasma environment where ions for bombardment are extracted from the plasma, or it can be done in a vacuum environment where ions for bombardment are formed in a separate ion gun. The latter ion-plating configuration is often called ion beam assisted deposition (IBAD). Figure 4 shows two forms of ion plating, one in a plasma environment and one in a vacuum environment.
Advantages of ion plating:
Significant energy can be introduced into the surface of the depositing film by the energetic particle bombardment.
Atomic packing near the surface of the growing film can be densified by the concurrent ion bombardment (atomic peening).
Surface coverage can be improved over vacuum evaporation and sputter deposition due to gas scattering and sputtering/redeposition effects.
Controlled bombardment can be used to modify film properties such as adhesion, density, residual film stress, optical properties, etc.
Film properties depend less on the angle of incidence of the flux of material deposited than they do on sputter deposition and vacuum evaporation due to atomic peening and sputtering/redeposition effects.
Bombardment can be used to improve the chemical composition of the film material by bombardment enhanced chemical reactions and sputtering of unreacted species from the growing surface during reactive deposition.
In some applications, the plasma can be used to activate reactive species and create new chemical species that are more readily adsorbed to aid in the reactive deposition process.
Disadvantages of ion plating:
There are many processing variables to control.
It is often difficult to obtain uniform ion bombardment over the substrate surface leading to film property variations over the surface.
Substrate heating can be excessive.
Under some conditions, the bombarding gas may be incorporated into the growing film.
Under some conditions, excessive residual compressive film stress may be generated by the atomic peening.
Ion plating is used to deposit hard coatings of compound materials, adherent metal coatings, optical coatings with high densities and conformal coatings on complex surfaces. Depositing aluminum films on aerospace components using ion plating is called ion vapor deposition.
Plasma-enhanced chemical vapor deposition (PECVD). Chemical vapor deposition (CVD) deposits atoms or molecules by reducing the decomposition of a chemical-vapor precursor species that contains the material to be deposited. The reduction is normally accomplished using hydrogen at an elevated temperature. Decomposition is accomplished by thermal activation. The use of a plasma allows the reduction or decomposition to be done at a lower temperature than using temperature alone.
The deposited material may react with gaseous reactive species in the system to produce compounds (oxides, nitrides) or used in conjunction with PVD processes to produce compounds, such as carbide and carbonitrides, or alloys. Using plasma enhances the chemical activity of the reactive species, allowing chemical reactions to proceed at low temperature. CVD processing is generally accompanied by volatile reaction by-products, and those, along with unused precursor vapors and other processing gases, must be removed from the deposition system.
CVD processes have numerous other names, such as vapor phase epitaxy, when it is used to deposit single-crystal films; metalorganic CVD when a plasma is used to induce or enhance decomposition and reaction; low-pressure CVD when the pressure is less than ambient; and low-pressure PECVD when the pressure is low enough that ions can be accelerated to appreciable energies from the plasma. In some cases, the precursor vapor is not completely decomposed in the plasma, and the deposited film is in the form of polymeric changes. This process is plasma polymerization.
Some examples of precursor vapors and the materials to be deposited are:
SiH4 => Si, CH4 => C, NiCO4 => Ni, B2H6 or BCl3 => B, WF6 => W, TiCl4 => Ti.
These can be combined with oxygen or nitrogen gases to form compounds and glasses. An example is the plasma-enhanced CVD deposition of phosphosilicate glass from silane, nitrous oxide and phosphine for encapsulation in the semi-conductor industry. Plasma-enhanced CVD can be used to deposit organic as well as inorganic materials. Examples are amorphous hydrogenated silicon for solar cells from silane, SiO2-x for permeation barriers from hexamethyldisiloxane and organic polymers form organic monomers. Figure 5 shows a RF-driven parallel plate plasma-enhanced CVD reactor such as used to deposit PSG glass.
Advantages of plasma-enhanced CVD:
Many elemental, alloy, glassy and compound materials can be deposited.
The microstructure of the material can be varied over a large range, sometimes from amorphous to polycrystalline to single crystal.
High deposition rates.
Complex surfaces can be coated uniformly.
Equipment is compatible with other vacuum processes.
Disadvantages of plasma-enhanced CVD:
High deposition temperatures are usually required for complete decomposition or reaction.
Some precursor material may be expensive, dangerous or unstable.
Processing gases and vapors and by-products must be disposed of by the pumping system.
There are many processing variables such as vapor concentration, gas composition, heating profile and gas flow pattern.
Incomplete decomposition of the precursors can leave undesirable impurities in the deposited material.
In semi-conductor processing, this process is used to deposit insulator and encapsulating films, amorphous and polycrystalline silicon films and conductor metallizations. Low-pressure plasma-enhanced CVD is used to deposit diamond-like carbon films for wear resistance and is used in hybrid deposition processes to provide the reacting species.
Hybrid vacuum deposition processes. In some cases, two deposition techniques can be used at the same time or sequentially. One example is the use of sputter deposition of a metal in conjunction with low-pressure, plasma-enhanced CVD of carbon from acetylene to deposit a metal carbide as a wear-resistant coating on tools. If nitrogen is present, a carbonitride can be deposited. Varying the ratios of nitrogen and carbon in titanium carbonitride deposition can give a range of colors from black to purple to gold. These coatings are used for decorative and wear-resistant applications. Metal organic polymer composite materials can be deposited by a combination of evaporation or sputtering combined with plasma polymerization of an organic material.
Vacuum-deposition processing equipment. The equipment used to generate the deposition environment is an integral part of the process. The principle parts of the deposition system are the deposition chamber, fixturing, which holds the parts to be coated, and the vacuum pumping system, which removes gases and vapors from the deposition camber.
Generating a vacuum has two purposes: 1) To reduce the gas pressure enough so that vaporized atoms have a long "mean-free path" and do not nucleate in the vapor to form soot; and 2) To reduce the contamination level to the point that the desired film can be deposited. The fixturing holds the substrates to be coated and provides the motion, relative to the vaporization source. This is often necessary to give a uniform deposition over a large area, a complex surface or over many substrates. The fixture and process cycle times determine throughput. The deposition chamber is sized to contain the fixturing and provide room for accessories such as shutters, deposition rate monitors, heaters, etc. Proper design, construction, operation and maintenance are necessary to obtain a reproducible product with high yield and desired product throughput.
Vacuum deposition of thin films and coatings is continually evolving. This is true of processes, equipment, applications and markets. Often, the decision to use vacuum deposition processes is influenced by environmental concerns, since they are "dry processes." Developing applications include clear permeation barrier layers for polymer webs and three-dimensional containers, decorative/wear-resistant coatings for many applications, coatings to replace electroplated chromium, corrosion-resistant coatings to replace cadmium and others.
Metal Halide Lamps:

Step 1: Metal atoms move from the hot electric arc toward the cooler arc tube wall where the halides are.
Step 2: Near the wall, the temperature and vapor pressure allow the metals and halides to form a stable molecule which will not corrode the arc tube.
Step 3: When the metal halides approach the hot arc, the molecule breaks apart.
Step 4: The halides move away from the arc, while the metals are energized and radiate light.
Sometimes a metal atom will not combine with a halide, but instead migrates through the arc tube. Over time, when enough metal atoms are lost, the lamp will fail.
Legality of Alternative Headlights
In the USA, headlights are only legal for use on public roads if they are DOT approved. (Similar laws apply in all other "developed" countries and many other countries.) This requires that samples of the headlights be sent to the proper testing laboratory and certification must be obtained that the design is approved. Approval is only with specific bulbs tested in the lab in the samples and DOT approval is invalid if a different bulb is used.
It is illegal to use on public roads homebrew headlights or headlights using a bulb other than what they were DOT-approved to use. For example, a headlight that is DOT approved and normally uses a 9005 halogen bulb is almost certainly not DOT approved for anything else - especially not a D2S for example.
Many HID conversion kits come with disclaimers to the effect of "off road use only". Such disclaimers may appear in the kit seller's ads, web site, or on the kit packaging. Less honest retrofit outfits may merely fail to let you know that such a retrofit is not road-legal. More dishonest retrofitting outfits may even falsely claim that their headlights or ones modified with their product/service are road legal.
DOT requirements have lower and/or upper limits (sometimes both) on candela ("beam candlepower") into many different directions, as in various angles above, below, and to each side of straight ahead. In the unlikely event your headlight meets all of these and other technical requirements, it is still illegal unless it is submitted for testing and certification.
As for what can happen if you use illegal headlights?
1. Often enough, nothing. This depends on location. In some USA cities, law enforcement of traffic regualtions in general is lax. Police are generally not equipped to do headlight photometry anyway.
2. Some unlawful HID retrofit headlights are obvious to a few cops. It is more obvious if you have the really bluish or aqua-ish or obviously dichroic fake HID bluish headlights that are known to some cops to be a safe bet to not meet the complex photometric and colorimetric standards.
If the cop believes you have unlawful headlights, you can be stopped and ticketed. Depending on your state, the violation may be having an invalid inspection sticker or whatever violation of headlight law. Depending on your state and the mood of the cop, you may in extreme cases be barred from driving the car at night (or at all) until it has legal headlights and it has passed inspection again with the legal headlights.
3. Excessive light in some directions can dazzle other drivers. It is possible for you to be legally liable if this causes or contributes to an accident. Modified headlights might have insufficient light in some directions, and you could be held legally liable if that causes or contributes to an accident.
4. You may have trouble with your insurance company if you have an accident while driving a car that cannot legally pass inspection or has fraudulently passed inspection, even if the inability to legally pass inspection did not contribute to the accident. You might also have trouble with your insurance company if you are cited for driving without valid current inspection stickers or are cited for having fraudulently passed inspection.
Note that at least in some states, "off road" lights must be inoperative when driving on a public road. This may mean having opaque covers on the lights and/or having wiring to the lights disconnected.
Safety and Reliability Requirements
Please note that D1 and D2 type bulbs operate at high temperature with great pressure probably near or over 30 atmospheres. The internal quartz arc tube temperature is probably typically around 800 degrees C (1400-1500 degrees F or so). The outer bulb is not this hot, but it is definitely burning hot. The arc tube always has at least some miniscule risk of exploding and should only be operated in a headlight housing or other suitable container. Improper operation increases the risk of bulb explosion.
The bulb must be clean and free of dirt, grease, organic matter, ash, salt, or alkali. Salts, ash, and alkalis have a tendency to slowly leach into red-hot and nearly red hot quartz which will result in strains, weak spots, and maybe cracks.
A metal halide lamp does not like frequent starting. D1 and D2 types can be blinked, but this should only be done for a limited amount of time. Starting causes wear on the electrodes. Excessive evaporation of electrode material will deposit it onto the inner surface of the arc tube which results in darkening and overheating of the arc tube. In D1 and D2 and some other metal halide lamps, there is a halogen cycle which cleans deposited tungsten electrode material from the inner surface of the arc tube. Prolonged continuous operation at proper internal temperatures is required for the halogen cycle to work.
Electrical Requirements
The electrical requirements of D2 type lamps are nasty. They require ballasts which are more difficult to homebrew than other ballasts. I strongly encourage hobbyists, do-it-yourselfers, and hackers to *NOT* try this. Try homebrewing a D2 ballast only if you have the patience of two saints, lots of electrical and electronic project skills including high voltage skills and skill in homebrewing high voltage transformers with the combined difficulties of flyback transformers and xenon trigger transformers, and a budget for replacing lots of blown parts before you get it working. You are better off buying ballasts from Osram, Bosch, or Aromat (a division of Matsushita) or others. For one thing, these lamps require special sockets made by few manufacturers and mostly sold only to ballast manufacturers.
The D2 types require a starting pulse. 7 kilovolts may on an average spark through these bulbs, but for reliability you need more, maybe 10 or possibly 12 kilovolts. Automotive use requires ability to restart a hot bulb with the mercury vapor pressure high, and this requires even more voltage - 12 to 15 kilovolts and maybe even more for good reliability. The usual ballasts supposedly produce starting pulse voltages like 18 kilovolts minimum, 20 kilovolts typical.
D1 types have an integral ignitor which the ballast has to work with.
Starting pulses must be repeated frequently until the arc is established.
The ballast must supply an open circuit output voltage - other than the starting pulses - of over 300 volts, preferably 400 or maybe preferably 450 volts - to force the arc to establish.
D1 and D2 type lamps are 35 watt lamps. Once the arc is established, the ballast must supply limited current or else the arc will draw extreme current and this will be bad for the bulb and/or other parts. The voltage across the lamp is normally around 80-90 volts when it is warmed up, but will be less during warmup. The ballast must handle a lamp voltage possibly as low as 16 volts early in warmup, although this voltage usually bottoms out higher - probably at least in the 20's of volts.
The ballast must deliver 35 watts to the lamp when the voltage across the lamp is between 70 and 110 volts. When this voltage is lower, the ballast must deliver at least .5 amp but generally no more than 2 amps and preferably as close to 35 watts as possible. Higher currents are preferred - a partially warmed up metal halide lamp sometimes has an unstable arc at lower current.
An automotive grade ballast often delivers boosted power (above 35 watts) at some times during warmup to give near-full light output. Note that a xenon arc or a mercury vapor arc does not produce visible light as efficiently as a metal halide arc does. Automotive grade ballasts with boosted power at some points of warmup have circuitry that models the thermal characteristics of the bulb. The maximum safe current for the bulb's electrodes must not be exceeded during a power boost during warmup.
A voltage across the bulb higher than 110 volts only occurs in the early stage of establishing the arc or if the bulb is failing. The ballast should deliver enough power to heat up the electrode tips enough for the arc to establish - more is better and over 35 watts is OK as long as the current is not excessive. But excessive power delivered to an aging bulb can cause the bulb to explode.
D1 and D2 lamps and most other metal halide lamps require AC. DC is tolerable briefly, and then preferably only if the bulb is cold. A DC electric field, hot quartz or hot glass, and salts or alkalis is not a good combination - electrolysis effects can occur which can create weak spots or cracks in the arc tube.
The AC delivered to a D1 or D2 type bulb usually has a frequency of a couple hundred to a few hundred Hz. Higher frequencies are probably OK with D2 types but the ignitors in D1 types may only work correctly or even be adequately conductive in a certain range of frequencies.
The AC current waveform in a D1 or D2 type lamp is traditionally a squarewave or close to a squarewave. Other waveforms have higher peak current for a given average current or RMS current, and the higher peak current is harder on the electrodes and may shorten the life or cause problems with the use of higher currents during warmup.
Metal halide lamps should not be overpowered, except where permissible for accelerated warmup and near-full light output during warmup. Overpowering one will shorten its life and increase the risk of the lamp exploding.Underpowering a metal halide lamp is also bad. If the electrodes are not hot enough, they do not do a good job of conducting electrons into the arc and voltage drop in this process (known as the "cathode fall") is excessive. Excessive cathode fall causes positive ions in the arc to hit the electrode at excessive speed which "sputters" electrode material onto the inner surface of the arc tube. For more info on discharge lamp mechanics, look in my Discharge Lamp Mechanics File.It is not recommended to experimentally operate metal halide lamps at reduced power. Besides the bad effects of high cathode fall on hot electrodes, an unusual temperature pattern can have the chemicals in the arc tube condense in locations that can block some of the light. And if the electrode cathode falls are excessive and unequally so, a DC electric field can result, which can cause destructive electrolysis effects on hot salts on hot quartz. This can cause the arc tube to crack.
Metal halide lamps should have power input within 10 percent of their rated wattage.